Skip to main content

A Relation-Algebraic Treatment of the Dedekind Recursion Theorem

  • Conference paper
  • First Online:
  • 378 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12062))

Abstract

The recursion theorem of Richard Dedekind is fundamental for the recursive definition of mappings on natural numbers since it guarantees that the mapping in mind exists and is uniquely determined. Usual set-theoretic proofs are partly intricate and become lengthy when carried out in full detail. We present a simple new proof that is based on a relation-algebraic specification of the notions in question and combines relation-algebraic laws and equational reasoning with Scott induction. It is very formal and most parts of it consist of relation-algebraic calculations. This opens up the possibility for mechanised verification. As an application we prove a relation-algebraic version of the Dedekind isomorphism theorem. Finally, we consider two variants of the recursion theorem to deal with situations which frequently appear in practice but where the original recursion theorem is not applicable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem. ACM Trans. Comput. Log. 9(1:2), 1–23 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and nondeterministic programs. Theor. Comput. Sci. 43, 123–147 (1986)

    Article  MathSciNet  Google Scholar 

  3. Berghammer, R.: Mathematik für die Informatik, 3rd edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-658-16712-7

    Book  MATH  Google Scholar 

  4. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloquium Publications, American Mathematical Society, New York (1967)

    MATH  Google Scholar 

  5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  6. Dedekind, R.: Was sind und was sollen die Zahlen? Vieweg, Braunschweig (1888)

    Google Scholar 

  7. Kolman, V.: Zahlen. Walter de Gruyter, Berlin (2016)

    MATH  Google Scholar 

  8. Lamm, C.: Karl Grandjot und der Dedekindsche Rekursionssatz. Mitt. DMV 24(1), 37–45 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Landau, E.: Grundlagen der Analysis. Akademische Verlagsgesellschaft, Leipzig (1930)

    MATH  Google Scholar 

  10. Loeckx, J., Sieber, K.: The Foundations of Program Verification, 2nd edn. Wiley, Chichester (1987)

    Book  Google Scholar 

  11. Lorenzen, P.: Die Definition durch vollständige Induktion. Monatsh. Math. Phys 47(1), 356–358 (1939)

    Article  MathSciNet  Google Scholar 

  12. Maddux, R.D.: Relation Algebras. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  13. Mathematics Program Construction Group: Fixed-point calculus. Inf. Process. Lett. 53(3), 131–136 (1995)

    Google Scholar 

  14. Schmidt, G., Ströhlein, T.: Relations and Graphs. Monographs on Theoretical Computer Science EATCS. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-77968-8

    Book  MATH  Google Scholar 

  15. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)

    Article  MathSciNet  Google Scholar 

  16. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

I thank the referees for carefully reading the paper and for their very valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Berghammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berghammer, R. (2020). A Relation-Algebraic Treatment of the Dedekind Recursion Theorem. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2020. Lecture Notes in Computer Science(), vol 12062. Springer, Cham. https://doi.org/10.1007/978-3-030-43520-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43520-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43519-6

  • Online ISBN: 978-3-030-43520-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics