Skip to main content

Photovoltaic Model Based on Manufacture’s Datasheet: Experimental Validation for Different Photovoltaic Technologies

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

  • 681 Accesses

Abstract

In this chapter, three different commercialized photovoltaic (PV) technologies—polycrystalline silicon (poly C–Si), copper indium gallium selenide (CIGS) and cadmium telluride (CdTe)—are investigated in terms of several aspects. A PV model based on manufacture’s datasheet has been presented. Its originality consists in the using of a simple procedure which takes only the datasheet parameters into account to identify the series resistance (Rs) of solar cells. Moreover, the ideality factor (n) value is adapted to fit the solar cell technology. Both the identified Rs and n values have been used within the solar cell block provided by MATLAB Simscape toolbox to model different PV modules having different technologies, as well as to predict their characteristics (current–voltage (I–V) and Power–Voltage (P–V)). A test facility is employed to carry out the required tests for assessing the PV model. Obtained experimental results under different climate conditions are compared with simulated ones. The comparison is carried out by evaluating four statistical errors with a view of measuring the accuracy of the proposed model in predicting the I–V and P–V characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarhaddi, F., Farshchi Tabrizi, F., Aghaei Zoori, H., et al.: Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Convers. Manag. 133, 97–109 (2017)

    Article  CAS  Google Scholar 

  2. Bhattarai, S., Kafle, G.K., Euh, S.-H., et al.: Comparative study of photovoltaic and thermal solar systems with different storage capacities: performance evaluation and economic analysis. Energy 61, 272–282 (2013)

    Article  Google Scholar 

  3. Caballero, F., Sauma, E., Yanine, F.: Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island’s block. Energy 61, 248–261 (2013)

    Article  Google Scholar 

  4. Bruno, B.: Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany. https://www.energy-charts.de

  5. (IEA) IEA.: Renewables (2019)

    Google Scholar 

  6. Ma, T., Yang, H., Zhang, Y., et al.: Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: a review and outlook. Renew. Sustain. Energy Rev. 43, 1273–1284 (2015)

    Article  Google Scholar 

  7. Polo, J., Alonso-Abella, M., Ruiz-Arias, J.A., et al.: Worldwide analysis of spectral factors for seven photovoltaic technologies. Sol. Energy 142, 194–203 (2017)

    Article  CAS  Google Scholar 

  8. Dadje, A., Djongyang, N., Kana, J.D., et al.: Maximum power point tracking methods for photovoltaic systems operating under partially shaded or rapidly variable insolation conditions: a review paper. Int. J. Sustain. Eng. 9(4), 224–239 (2016)

    Article  Google Scholar 

  9. Kheldoun, A., Bradai, R., Boukenoui, R., et al.: A new golden section method-based maximum power point tracking algorithm for photovoltaic systems. Energy Convers. Manag. 111, 125–136 (2016)

    Article  Google Scholar 

  10. Gab-Su, S., Jong-Won, S., Bo-Hyung, C., et al.: Digitally controlled current sensorless photovoltaic micro-converter for DC distribution. IEEE Trans. Ind. Inform. 10(1), 117–126 (2014)

    Article  Google Scholar 

  11. Chatterjee, A., Keyhani, A., Kapoor, D.: Identification of photovoltaic source models. IEEE Trans. Energy Convers. 26(3), 883–889 (2011)

    Article  Google Scholar 

  12. Massi Pavan, A., Mellit, A., Lughi, V.: Explicit empirical model for general photovoltaic devices: experimental validation at maximum power point. Sol. Energy 101, 105–116 (2014)

    Article  CAS  Google Scholar 

  13. Brus, V.: On quantum efficiency of nonideal solar cells. Sol. Energy 86(2), 786–791 (2012)

    Article  CAS  Google Scholar 

  14. Lun, S-x, Du, C-j, Yang, G-h, et al.: An explicit approximate I-V characteristic model of a solar cell based on padé approximants. Sol. Energy 92, 147–159 (2013)

    Article  Google Scholar 

  15. Saloux, E., Teyssedou, A., Sorin, M.: Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 85(5), 713–722 (2011)

    Article  Google Scholar 

  16. Babu, B.C., Gurjar, S.: A novel simplified two-diode model of photovoltaic (PV) module. IEEE J. Photovoltaics 4(4), 1156–1161 (2014)

    Article  Google Scholar 

  17. Huld, T., Friesen, G., Skoczek, A., et al.: A power-rating model for crystalline silicon PV modules. Sol. Energy Mater. Sol. Cells 95(12), 3359–3369 (2011)

    Article  CAS  Google Scholar 

  18. Mellit, A., Sağlam, S., Kalogirou, S.: Artificial neural network-based model for estimating the produced power of a photovoltaic module. Renew. Energy 60, 71–78 (2013)

    Article  Google Scholar 

  19. Dizqah, A.M., Maheri, A., Busawon, K.: An accurate method for the PV model identification based on a genetic algorithm and the interior-point method. Renew. Energy 72, 212–222 (2014)

    Article  Google Scholar 

  20. Khanna, V., Das, B., Bisht, D., et al.: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew. Energy 78, 105–113 (2015)

    Article  Google Scholar 

  21. Chin, V.J., Salam, Z., Ishaque, K.: An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution. Energy Convers. Manag. 124, 42–50 (2016)

    Article  Google Scholar 

  22. Mekki, H., Mellit, A., Salhi, H.: Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simul. Model. Pract. Theory 67, 1–13 (2016)

    Article  Google Scholar 

  23. Jena, D., Ramana, V.V.: Modeling of photovoltaic system for uniform and non-uniform irradiance: a critical review. Renew. Sustain. Energy Rev. 52, 400–417 (2015)

    Article  Google Scholar 

  24. Green, M.A., Dunlop, E.D., Levi, D.H., et al.: Solar cell efficiency tables (version 54). Prog. Photovoltaics Res. Appl. 27(7), 565–575 (2019)

    Article  Google Scholar 

  25. Kumar, S.G., Rao, K.K.: Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ. Sci. 7(1), 45–102 (2014)

    Article  CAS  Google Scholar 

  26. Wolden, C.A., Kurtin, J., Baxter, J.B., et al.: Photovoltaic manufacturing: present status, future prospects, and research needs. J. Vacuum Sci. Technol. A Vacuum Surf. Films 29(3), 030801 (2011)

    Article  Google Scholar 

  27. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  CAS  Google Scholar 

  28. Best research cell efficiencies.: The National Renewable Energy Laboratory (NREL) (2019)

    Google Scholar 

  29. Jiang, Y., Shen, H., Pu, T., et al.: High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure. Sol. Energy 142, 91–96 (2017)

    Article  CAS  Google Scholar 

  30. Murdock, H. E., Gibb, D., André, T., et al.: Renewables 2019 Global Status Report (2019)

    Google Scholar 

  31. Raturi, A. K.: Renewables 2016 global status report (2016)

    Google Scholar 

  32. Reinhard, P., Chirila, A., Blosch, P., et al.: Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. In: IEEE 38th Photovoltaic Specialists Conference (PVSC), vol. 2, pp. 1–9 (2012)

    Google Scholar 

  33. Burst, J.M., Duenow, J.N., Albin, D.S., et al.: CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nature Energy 1(3), 16015 (2016)

    Article  CAS  Google Scholar 

  34. Major, J., Treharne, R., Phillips, L., et al.: A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 511(7509), 334 (2014)

    Article  CAS  Google Scholar 

  35. Boukenoui, R., Ghanes, M., Barbot, J.-P., et al.: Experimental assessment of maximum power point tracking methods for photovoltaic systems. Energy 132, 324–340 (2017)

    Article  Google Scholar 

  36. Orioli, A., Di Gangi, A.: A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Appl. Energy 102, 1160–1177 (2013)

    Article  CAS  Google Scholar 

  37. Luque, A., Hegedus, S.: Handbook of photovoltaic science and engineering. Wiley, England (1996). 2003

    Google Scholar 

  38. Walker, G.: Evaluating MPPT converter topologies using a MATLAB PV model. J. Electr. Electron. Eng. Australia 21(1), 49 (2001)

    Google Scholar 

  39. Xiao, W., Dunford, W. G., Capel, A. A.: Novel modeling method for photovoltaic cells. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), IEEE, pp. 1950–1956 (2004)

    Google Scholar 

  40. Ulapane, N. N., Dhanapala, C. H., Wickramasinghe, S. M., et al.: Extraction of parameters for simulating photovoltaic panels. In: 2011 6th IEEE International Conference on Industrial and Information Systems (ICIIS), IEEE, pp. 539–544 (2011)

    Google Scholar 

  41. Chenni, R., Makhlouf, M., Kerbache, T., et al.: A detailed modeling method for photovoltaic cells. Energy 32(9), 1724–1730 (2007)

    Article  CAS  Google Scholar 

  42. Mäki, A., Valkealahti, S.: Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions. IEEE Trans. Energy Convers. 27(1), 173–183 (2011)

    Article  Google Scholar 

  43. Massi Pavan, A., Mellit, A., De Pieri, D., et al.: A study on the mismatch effect due to the use of different photovoltaic modules classes in large-scale solar parks. Prog. Photovoltaics Res. Appl. 22(3), 332–345 (2014)

    Article  Google Scholar 

  44. Markat, T., Castañer, L.: Photovoltaics: fundamentals and applications. Preface Guide to Usage of the Handbook by Professional Group (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Dr. V. Lughi, from Trieste University, Italy, for the useful database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Boukenoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boukenoui, R., Mellit, A., Massi Pavan, A. (2020). Photovoltaic Model Based on Manufacture’s Datasheet: Experimental Validation for Different Photovoltaic Technologies. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_12

Download citation

Publish with us

Policies and ethics