Skip to main content

Solar Irradiation Fundamentals and Solar Simulators

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

Abstract

This chapter is prepared for introduction to solar radiation and solar simulators, which are widely used photovoltaic researches. In this study, the fundamentals of solar radiation and the components of solar radiation in the atmosphere are briefly expressed. Besides, solar simulators used in PV tests are emphasized, classification of solar simulators, international standards and light sources are explained in detail. Also, as a case study, it is designed LED-based solar simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gueymard, C.A., Myers, D.R.: Solar radiation measurement: progress in radiometry for improved modeling. In: Badescu, V. (ed.) Modeling Solar Radiation at the Earth’s Surface: Recent Advances, pp. 1–27. Springer, Berlin (2008)

    Google Scholar 

  2. Bhatia, S.C.: Advanced Renewable Energy Systems (Part 1 and 2). WPI Publishing (2014)

    Google Scholar 

  3. Şahin, A.D., Şen, Z.: Solar irradiation estimation methods from sunshine and cloud cover data. In: Badescu, V. (ed.) Modeling Solar Radiation at the Earth’s Surface: Recent Advances, pp. 145–173. Springer, Berlin (2008)

    Google Scholar 

  4. Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Processes. Wiley, Hoboken (2013)

    Book  Google Scholar 

  5. World Bank Group: Direct normal irradiation map. In: Global Solar Atlas. https://globalsolaratlas.info/downloads/world (2019)

  6. Harrouni, S.: Fractal classification of typical meteorological days from global solar irradiance: application to five sites of different climates. In: Modeling Solar Radiation at the Earth’s Surface, pp. 29–54. Springer, Berlin (2008)

    Google Scholar 

  7. Li, D.H.W., Cheung, G.H.W., Lam, J.C.: Analysis of the operational performance and efficiency characteristic for photovoltaic system in Hong Kong. Energy Convers. Manag. 46, 1107–1118 (2005)

    Article  Google Scholar 

  8. Gxasheka, A.R., van Dyk, E.E., Meyer, E.L.: Evaluation of performance parameters of PV modules deployed outdoors. Renew. Energy 30, 611–620 (2005). https://doi.org/10.1016/j.renene.2004.06.005

    Article  CAS  Google Scholar 

  9. Adamo, F., Attivissimo, F., Di Nisio, A., Spadavecchia, M.: Characterization and testing of a tool for photovoltaic panel modeling. IEEE Trans. Instrum. Meas. 60, 1613–1622 (2011). https://doi.org/10.1109/TIM.2011.2105051

    Article  Google Scholar 

  10. Parida, B., Iniyan, S., Goic, R.: A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011). https://doi.org/10.1016/J.RSER.2010.11.032

    Article  CAS  Google Scholar 

  11. Guechi, A., Chegaar, M.: Effects of diffuse spectral illumination on microcrystalline solar cells. J. Electron Devices 5, 116–121 (2007)

    Google Scholar 

  12. Droz, C., Roux, J., Rouelle, S.B., et al.: Mastering the spectrum in Class A pulsed solar simulators. In: Proceedings of 23rd EUPVSEC, pp. 326–329 (2008)

    Google Scholar 

  13. Kenny, R.P., Viganó, D., Salis, E., et al.: Power rating of photovoltaic modules including validation of procedures to implement IEC 61853‐1 on solar simulators and under natural sunlight. Prog. Photovoltaics Res. Appl. 21, 1384–1399 (2013)

    Article  CAS  Google Scholar 

  14. Sayre, R.M., Cole, C., Billhimer, W., et al.: Spectral comparison of solar simulators and sunlight. Photodermatol. Photoimmunol. Photomed. 7, 159–165 (1990)

    CAS  Google Scholar 

  15. Kim, K.A., Dostart, N., Huynh, J., Krein, P.T.: Low-cost solar simulator design for multi-junction solar cells in space applications. In: 2014 Power and Energy Conference at Illinois (PECI). IEEE, pp. 1–6 (2014)

    Google Scholar 

  16. Dong, X., Nathan, G.J., Sun, Z., et al.: Concentric multilayer model of the arc in high intensity discharge lamps for solar simulators with experimental validation. Sol. Energy 122, 293–306 (2015). https://doi.org/10.1016/j.solener.2015.09.004

    Article  Google Scholar 

  17. Grandi, G., Ienina, A.: Analysis and realization of a low-cost hybrid LED-halogen solar simulator. In: 2013 International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, pp. 794–799 (2013)

    Google Scholar 

  18. Kohraku, S., Kurokawa, K.: A fundamental experiment for discrete-wavelength LED solar simulator. Sol. Energy Mater. Sol. Cells 90, 3364–3370 (2006)

    Article  CAS  Google Scholar 

  19. Ferrer, J.P., Martínez, M., Trujillo, P., et al.: Indoor characterization at production scale: 200 kWp of CPV solar simulator measurements. In: AIP Conference Proceedings, AIP, pp. 161–164 (2012)

    Google Scholar 

  20. Bickler, D.B.: The calibration of a solar simulator. In: Proceedings of the ASME Solar Energy Applications Committee Winter Annual Meeting (1962)

    Google Scholar 

  21. Bisaillon, J.C., Cummings, J.R., Culik, J.S., et al.: Non-traditional light sources for solar cell and module testing. In: Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No. 00CH37036). IEEE, pp. 1498–1501 (2000)

    Google Scholar 

  22. Namin, A., Jivacate, C., Chenvidhya, D., et al.: Construction of tungsten halogen, pulsed LED, and combined tungsten halogen-LED solar simulators for solar cell-characterization and electrical parameters determination. Int. J. Photoenergy 2012 (2012)

    Article  Google Scholar 

  23. Mohan, M.V.A., Pavithran, J., Osten, K.L., et al.: Simulation of spectral match and spatial non-uniformity for LED solar simulator. In: 2014 IEEE Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS). IEEE, pp. 111–117 (2014)

    Google Scholar 

  24. Sarwar, J., Georgakis, G., LaChance, R., Ozalp, N.: Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications. Sol. Energy 100, 179–194 (2014)

    Article  CAS  Google Scholar 

  25. Dennis, T.: An arbitrarily programmable solar simulator based on a liquid crystal spatial light modulator. In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 3326–3330 (2014)

    Google Scholar 

  26. Dennis, T., Schlager, J.B., Yuan, H.-C., et al.: A novel solar simulator based on a super-continuum laser. In: 2012 38th IEEE Photovoltaic Specialists Conference. IEEE, pp. 1845–1848 (2012)

    Google Scholar 

  27. Bari, D., Wrachien, N., Tagliaferro, R., et al.: Reliability study of dye-sensitized solar cells by means of solar simulator and white LED. Microelectron. Reliab. 52, 2495–2499 (2012)

    Article  CAS  Google Scholar 

  28. Novickovas, A., Baguckis, A., Mekys, A., Tamosiunas, V.: Compact light-emitting diode-based AAA class solar simulator: design and application peculiarities. IEEE J. Photovoltaics 5, 1137–1142 (2015). https://doi.org/10.1109/JPHOTOV.2015.2430013

    Article  Google Scholar 

  29. Wang, W., Aichmayer, L., Laumert, B., Fransson, T.: Design and validation of a low-cost high-flux solar simulator using fresnel lens concentrators. Energy Procedia 49, 2221–2230 (2014). https://doi.org/10.1016/j.egypro.2014.03.235

    Article  CAS  Google Scholar 

  30. Villalva, M.G., Gazoli, J.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24, 1198–1208 (2009). https://doi.org/10.1109/TPEL.2009.2013862

    Article  Google Scholar 

  31. Meng, H., Xiong, L., He, Y., et al.: Uncertainty analysis of solar simulator’s spectral irradiance measurement. In: 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy. International Society for Optics and Photonics, p. 84193A (2012)

    Google Scholar 

  32. Meng, Q., Wang, Y., Zhang, L.: Irradiance characteristics and optimization design of a large-scale solar simulator. Sol. Energy 85, 1758–1767 (2011). https://doi.org/10.1016/j.solener.2011.04.014

    Article  Google Scholar 

  33. Yamamoto, M., Ikki, O.: National survey report of PV power applications in Japan. International Energy Agency Co-operative Program on Photovoltaic Power Systems (2010)

    Google Scholar 

  34. Dennis, T., Schlager, J.B., Bertness, K.A.: A novel solar simulator based on a supercontinuum laser for solar cell device and materials characterization. IEEE J. Photovoltaics 4, 1119–1127 (2014)

    Article  Google Scholar 

  35. Serreze, H.B., Sobhie, H.M., Hogan, S.J.: Solar simulators-beyond Class A. In: 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, pp. 100–105 (2009)

    Google Scholar 

  36. Yang, C., Wang, J., Guo, X., et al.: A multisource regular dodecahedron solar simulator structure for uniform flux. IEEE J. Photovoltaics 6, 516–521 (2016). https://doi.org/10.1109/JPHOTOV.2015.2504784

    Article  Google Scholar 

  37. Chawla, M.K., Tech, P.E.: A Step by Step Guide to Selecting the “Right” Solar Simulator for Your Solar Cell Testing Application. Photo Emiss Tech, Inc, USA (2006)

    Google Scholar 

  38. Riedel, N., Pratt, L., Edler, A., Haas, F.: Effects of a neutral density filter in measuring low-light performance with a pulsed light Xe arc solar simulator. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). IEEE, pp. 1–4 (2015)

    Google Scholar 

  39. Riordan, C., Hulstron, R.: What is an air mass 1.5 spectrum? (Solar cell performance calculations). In: IEEE Conference on Photovoltaic Specialists. IEEE, pp. 1085–1088 (1990)

    Google Scholar 

  40. Polly, S.J., Bittner, Z.S., Bennett, M.F., et al.: Development of a multi-source solar simulator for spatial uniformity and close spectral matching to AM0 and AM1. 5. In: 2011 37th IEEE Photovoltaic Specialists Conference. IEEE, pp. 1739–1743 (2011)

    Google Scholar 

  41. Shrotriya, V., Li, G., Yao, Y., et al.: Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 16, 2016–2023 (2006)

    Article  CAS  Google Scholar 

  42. Fanney, A.H., Davis, M.W., Dougherty, B.P., et al.: Comparison of photovoltaic module performance measurements. J. Sol. Energy Eng. 128, 152–159 (2006)

    Article  CAS  Google Scholar 

  43. Georgescu, A., Damache, G., Gîrţu, M.A.: Class A small area solar simulator for dye-sensitized solar cell testing. J. Optoelectron. Adv. Mater. 10, 3003–3007 (2008)

    CAS  Google Scholar 

  44. Bazzi, A.M., Klein, Z., Sweeney, M., et al.: Solid-state solar simulator. IEEE Trans. Ind. Appl. 48, 1195–1202 (2012). https://doi.org/10.1109/TIA.2012.2199071

    Article  Google Scholar 

  45. Krusi, P., Schmid, R.: The CSI 1000 W lamp as a source for solar radiation simulation. Sol. Energy 30, 455–462 (1983). https://doi.org/10.1016/0038-092X(83)90116-0

    Article  Google Scholar 

  46. Jang, S.H., Shin, M.W.: Fabrication and thermal optimization of LED solar cell simulator. Curr. Appl. Phys. 10, S537–S539 (2010). https://doi.org/10.1016/j.cap.2010.02.035

    Article  Google Scholar 

  47. Bliss, M., Plyta, F., Betts, T.R., Gottschalg, R.: LEDs based characterisation of photovoltaic devices. In: International Conference on Energy Efficient LED Lighting and Solar Photovoltaic Systems Conference, Indian Institute of Technology, Kanpur, India, 27th-29th March (2014)  

    Google Scholar 

  48. Plyta, F., Mihaylov, B.V., Betts, T.R., Gottschalg, R.: Optical design of a LED solar simulator and survey on its performance characterisation capability. In: Proceedings of the 8th Photovoltaic Science, Application and Technology (PVSAT) January (2012)

    Google Scholar 

  49. Plyta, F., Betts, T.R., Gottschalg, R.: Towards a fully LED-based solar simulator-spectral mismatch considerations. In: 28th European Photovoltaic Solar Energy Conference and Exhibition, pp. 3496–3499. (2013) https://doi.org/10.4229/28thEUPVSEC2013-4AV.6.44

  50. Georgescu, A., Gîrţu, M.A., Ciupinǎ, V.: Spectral calibration of a LED-based solar simulator—a theoretical approach. J. Optoelectron. Adv. Mater. 15, 31–36 (2013)

    CAS  Google Scholar 

  51. Hamadani, B.H., Chua, K., Roller, J., et al.: Towards realization of a large-area light-emitting diode-based solar simulator. Prog. Photovoltaics Res. Appl. 21, 779–789 (2013). https://doi.org/10.1002/pip.1231

    Article  Google Scholar 

  52. Kohraku, S., Kurokawa, K.: New methods for solar cells measurement by LED solar simulator. In: 3rd World Conference on Photovoltaic Energy Conversion, vol. 2, pp. 1977–1980 (2003)

    Google Scholar 

  53. Bliss, M., Betts, T.R., Gottschalg, R.: Advantages in using LEDs as the main light source in solar simulators for measuring PV device characteristics. In: Proceedings of SPIE (2008)

    Google Scholar 

  54. Tsuno, Y., Kamisako, K., Kurokawa, K.: New generation of PV module rating by LED solar simulator—a novel approach and its capabilities. In: 2008 33rd IEEE Photovoltaic Specialists Conference, pp. 1–5 (2008)

    Google Scholar 

  55. Krebs, F.C., Sylvester-Hvid, K.O., Jørgensen, M.: A self-calibrating led-based solar test platform. Prog. Photovoltaics Res. Appl. 19, 97–112 (2011)

    Article  CAS  Google Scholar 

  56. Kolberg, D., Schubert, F., Lontke, N., et al.: Development of tunable close match LED solar simulator with extended spectral range to UV and IR. Energy Procedia 8, 100–105 (2011). https://doi.org/10.1016/j.egypro.2011.06.109

    Article  Google Scholar 

  57. Kolberg, D., Schubert, F., Klameth, K., Spinner, D.M.: Homogeneity and lifetime performance of a tunable close match LED solar simulator. Energy Procedia 27, 306–311 (2012). https://doi.org/10.1016/j.egypro.2012.07.068

    Article  CAS  Google Scholar 

  58. Plyta, F., Betts, T.R., Gottschalg, R.: Potential for LED solar simulators. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 701–705 (2013)

    Google Scholar 

  59. Linden, K.J., Neal, W.R., Serreze, H.B.: Adjustable spectrum LED solar simulator. In: Proceedings of SPIE (2014)

    Google Scholar 

  60. Luka, T., Eiternick, S., Turek, M.: Rapid testing of external quantum efficiency using LED solar simulators. Energy Procedia 77, 113–118 (2015). https://doi.org/10.1016/j.egypro.2015.07.018

    Article  CAS  Google Scholar 

  61. Leary, G., Switzer, G., Kuntz, G, Kaiser, T.: Comparison of xenon lamp-based and led-based solar simulators. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 3062–3067 (2016)

    Google Scholar 

  62. Hamadani, B.H., Roller, J., Dougherty, B., Yoon, H.W.: Fast and reliable spectral response measurements of PV cells using light emitting diodes. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 73–75 (2013)

    Google Scholar 

  63. Dennis, T.: Saturation in solar cells from ultra-fast pulsed-laser illumination. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 3023–3026 (2016)

    Google Scholar 

  64. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006). https://doi.org/10.1103/RevModPhys.78.1135

    Article  CAS  Google Scholar 

  65. Dennis, T., Yasanayake, C., Gerke, T., et al.: A programmable solar simulator for realistic seasonal, diurnal, and air-mass testing of multi-junction concentrator photovoltaics. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 2327–2332 (2016)

    Google Scholar 

  66. Mundus, M., Dasa, M.K., Wang, X., et al.: Spectrally shaped supercontinuum for advanced solar cell characterization. In: 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, pp. 514–519 (2015)

    Google Scholar 

  67. Seoul Semiconductor: Product data sheet (2013)

    Google Scholar 

  68. Grandi, G., Ienina, A., Bardhi, M.: Effective low-cost hybrid LED-halogen solar simulator. IEEE Trans. Ind. Appl. 50, 3055–3064 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ş. Sağlam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esen, V., Sağlam, Ş., Oral, B. (2020). Solar Irradiation Fundamentals and Solar Simulators. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_1

Download citation

Publish with us

Policies and ethics