Skip to main content

Synergized Bootstrapping: The Whole is Faster than the Sum of Its Parts

  • Conference paper
  • First Online:
Quantitative Psychology (IMPS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 322))

Included in the following conference series:

  • 674 Accesses

Abstract

Re-sampling methods are popular for assessing uncertainty, for testing hypotheses, or for cross-validation because of their simplicity. They all rely on a similar scheme: generating replicated datasets by sampling data points from an original dataset, fitting a model or conducting a statistical test on each of these, and aggregating the results. However, when fitting the model or conducting the statistical test becomes time-consuming, re-sampling methods become impractical because of the many replications. Many methods have been proposed to alleviate the computational burden, but they generally do not incorporate two key features of re-sampled datasets. One, re-sampled datasets all stem from the same origin and therefore have similar characteristics. Two, there is a large class of cost functions for which the cost of a parameter set given data can be computed by summing its costs across the individual data points. As a consequence, once the costs of the individual data points are known, the parameter set’s cost can be obtained for any of the cost functions related to one of the replicated datasets. The synergized bootstrap method put forward in this paper exploits these two features to accelerate the optimization procedures for re-sampling methods. It is applied to the non-parametric bootstrapping of the parameters of a univariate mixture model, of which the min-log-likelihood function can be shown to have multiple local minima, using the differential evolution heuristic as global optimizer. It is demonstrated that the synergized method can lead to incredible accelerations (up to 100-500 times faster) while being more accurate than the standard DE method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., et al. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249.

    Article  Google Scholar 

  • Andrews, D. W. K. (1999). Higher-order improvements of a computationally attractive-step bootstrap for extremum estimators (Tech. Rep. No. 1230). Cowles Foundation for Research in Economics, Yale University.

    Google Scholar 

  • Boonthiem, S., Boonta, S., & Klongdee, W. (2017). A differential evolution algorithm with adaptive controlling weighted parameter for finite mixture model of some fire insurance data in Thailand. SNRU Journal of Science and Technology, 9, 491–501.

    Google Scholar 

  • Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., et al. (2013). A network approach to psychopathology: new insights into clinical longitudinal data. PLOS ONE, 8(4), e60188.

    Article  Google Scholar 

  • Cawley, G. C., & Talbot, N. L. C. (2008). Efficient approximate leave-one-out cross-validation for kernel logistic regression. Machine Learning, 71(2–3), 243–264.

    Article  Google Scholar 

  • Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367–1372.

    Article  Google Scholar 

  • Crainiceanu, C. M., & Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 66(1), 165–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Davidson, R., & MacKinnon, J. G. (1999). Bootstrap testing in nonlinear models. International Economic Review, 40(2), 487–508.

    Article  MathSciNet  Google Scholar 

  • Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B. (1990). More efficient bootstrap computations. Journal of the American Statistical Association, 85(409), 79–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Boca Raton: CRC Press. (Google-Books-ID: gLlpIUxRntoC).

    Google Scholar 

  • Good, P. I. (2000). Permutation tests: A practical guide to resampling methods for testing hypotheses. New York: Springer.

    Book  MATH  Google Scholar 

  • Halekoh, U., & Højsgaard, S. (2014). A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models: The R Package pbkrtest. Journal of Statistical Software, 59(9), 1–32.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2016). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Hu, F., & Kalbfleisch, J. D. (2000). The estimating function bootstrap. Canadian Journal of Statistics, 28(3), 449–499.

    Article  MathSciNet  MATH  Google Scholar 

  • Kleiner, A., Talwalkar, A., Sarkar, P., & Jordan, M. I. (2011). A scalable bootstrap for massive data. arXiv:1112.5016 [stat], (arXiv: 1112.5016).

    Google Scholar 

  • Kwedlo, W. (2014). Etimation of parameters of Gaussian mixture models by a hybrid method combining a self-adaptive differential evolution with the EM Algorithm. Advances in Computer Science Research, 11, 109–123.

    Google Scholar 

  • Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., & Heckerman, D. (2011). FaST linear mixed models for genome-wide association studies. Nature Methods, 8(10), 833.

    Article  Google Scholar 

  • Maho, Y. L., Whittington, J. D., Hanuise, N., Pereira, L., Boureau, M., Brucker, M., et al. (2014). Rovers minimize human disturbance in research on wild animals. Nature Methods, 11(12), 1242.

    Article  Google Scholar 

  • McLachlan, G. & Peel, D. (2000). Finite mixture models (1 ed.). New York: Wiley-Interscience.

    Book  MATH  Google Scholar 

  • Mestdagh, M., Verdonck, S., Duisters, K., & Tuerlinckx, F. (2015). Fingerprint resampling: A generic method for efficient resampling. Scientific Reports, 5, 16970.

    Article  Google Scholar 

  • Mestdagh, M., Verdonck, S., Meers, K., Loossens, T., & Tuerlinckx, F. (2018). Prepaid parameter estimation without likelihoods. arXiv:1812.09799 [stat]. (arXiv: 1812.09799).

    Google Scholar 

  • Mohamed, A. W., Sabry, H. Z., & Khorshid, M. (2012). An alternative differential evolution algorithm for global optimization. Journal of Advanced Research, 3(2), 149–165.

    Article  Google Scholar 

  • Persson, F., LindĂ©n, M., Unoson, C., & Elf, J. (2013). Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nature Methods, 10(3), 265.

    Article  Google Scholar 

  • Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33(1), 49–54.

    Article  Google Scholar 

  • Samuh, M. H., Grilli, L., Rampichini, C., Salmaso, L., & Lunardon, N. (2012). The use of permutation tests for variance components in linear mixed models. Communications in Statistics – Theory and Methods, 41(16–17), 3020–3029.

    Article  MathSciNet  MATH  Google Scholar 

  • Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676.

    Article  Google Scholar 

  • Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology, 57(5), 758–771.

    Article  Google Scholar 

  • Storn, R. & Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480.

    Article  Google Scholar 

  • Verdonck, S., & Tuerlinckx, F. (2014). The Ising decision maker: A binary stochastic network for choice response time. Psychological Review, 121(3), 422–462.

    Article  Google Scholar 

  • Verdonck, S., & Tuerlinckx, F. (2016). Factoring out nondecision time in choice reaction time data: Theory and implications. Psychological Review, 123(2), 208–218.

    Article  Google Scholar 

  • Zeng, D., & Lin, D. Y. (2008). Efficient resampling methods for nonsmooth estimating functions. Biostatistics (Oxford, England), 9(2), 355–363.

    Article  MATH  Google Scholar 

  • Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821–824.

    Article  Google Scholar 

  • Zhou, X., & Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nature Methods, 11(4), 407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Loossens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loossens, T., Verdonck, S., Tuerlinckx, F. (2020). Synergized Bootstrapping: The Whole is Faster than the Sum of Its Parts. In: Wiberg, M., Molenaar, D., GonzĂ¡lez, J., Böckenholt, U., Kim, JS. (eds) Quantitative Psychology. IMPS 2019. Springer Proceedings in Mathematics & Statistics, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-43469-4_18

Download citation

Publish with us

Policies and ethics