Iterated Integrals and Population Time Series Analysis

Conference paper
Part of the Abel Symposia book series (ABEL, volume 15)


One of the core advantages topological methods for data analysis provide is that the language of (co)chains can be mapped onto the semantics of the data, providing a natural avenue for human understanding of the results. Here, we describe such a semantic structure on Chen’s classical iterated integral cochain model for paths in Euclidean space. Specifically, in the context of population time series data, we observe that iterated integrals provide a model-free measure of pairwise influence that can be used for causality inference. Along the way, we survey recent results and applications, review the current standard methods for causality inference, and briefly provide our outlook on generalizations to go beyond time series data.



D.L. is supported by the Office of the Assistant Secretary of Defense Research & Engineering through ONR N00014-16-1-2010, and the Natural Sciences and Engineering Research Council of Canada (NSERC) PGS-D3.


  1. 1.
    Améndola, C., Friz, P., Sturmfels, B.: Varieties of signature tensors. Forum of Mathematics, Sigma 7, e10 (2019). MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arribas, I.P., Goodwin, G.M., Geddes, J.R., Lyons, T., Saunders, K.E.: A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder. Translational psychiatry 8(1), 274 (2018)CrossRefGoogle Scholar
  3. 3.
    Baez, J., Hoffnung, A.: Convenient categories of smooth spaces. Transactions of the American Mathematical Society 363(11), 5789–5825 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Baryshnikov, Y., Schlafly, E.: Cyclicity in multivariate time series and applications to functional mri data. In: 2016 IEEE 55th conference on decision and control (CDC), pp. 1625–1630. IEEE (2016)Google Scholar
  5. 5.
    Boedihardjo, H., Ni, H., Qian, Z.: Uniqueness of signature for simple curves. Journal of Functional Analysis 267(6), 1778–1806 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bressler, S.L., Seth, A.K.: Wiener–granger causality: a well established methodology. Neuroimage 58(2), 323–329 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, G., Glen, D.R., Saad, Z.S., Hamilton, J.P., Thomason, M.E., Gotlib, I.H., Cox, R.W.: Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis. Computers in biology and medicine 41(12), 1142–1155 (2011). URL
  8. 8.
    Chen, K.T.: Iterated integrals and exponential homomorphisms. Proceedings of the London Mathematical Society 3(1), 502–512 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chen, K.T.: Integration of Paths, Geometric Invariants and a Generalized Baker-Hausdorff Formula. Annals of Mathematics 65(1), 163–178 (1957)zbMATHGoogle Scholar
  10. 10.
    Chen, K.T.: Integration of Paths – A Faithful Representation of Paths by Noncommutative Formal Power Series. Transactions of the American Mathematical Society 89(2), 395–407 (1958)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chen, K.T.: Iterated path integrals. Bulletin of the American Mathematical Society 83(5), 831–879 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chevyrev, I., Kormilitzin, A.: A Primer on the Signature Method in Machine Learning (2016). ArXiv: 1603.03788Google Scholar
  13. 13.
    Chevyrev, I., Nanda, V., Oberhauser, H.: Persistence paths and signature features in topological data analysis. IEEE transactions on pattern analysis and machine intelligence (2018)Google Scholar
  14. 14.
    Chevyrev, I., Oberhauser, H.: Signature moments to characterize laws of stochastic processes (2018). ArXiv: 1810.10971Google Scholar
  15. 15.
    Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and Vineyards by Updating Persistence in Linear Time. In: Proceedings of the Twenty-second Annual Symposium on Computational Geometry, SCG ’06, pp. 119–126. ACM, New York, NY, USA (2006)Google Scholar
  16. 16.
    Cummins, B., Gedeon, T., Spendlove, K.: On the Efficacy of State Space Reconstruction Methods in Determining Causality. SIAM Journal on Applied Dynamical Systems 14(1), 335–381 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Félix, Y., Oprea, J., Tanré, D.: Algebraic Models in Geometry. Oxford University Press (2008)Google Scholar
  18. 18.
    Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2010)zbMATHCrossRefGoogle Scholar
  19. 19.
    Ghrist, R.: Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1), 61–75 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ginot, G., Tradler, T., Zeinalian, M.: A chen model for mapping spaces and the surface product. Annales scientifiques de l’École Normale Supérieure Ser. 4, 43(5), 811–881 (2010)Google Scholar
  21. 21.
    Granger, C.W.J.: Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 37(3), 424–438 (1969)zbMATHCrossRefGoogle Scholar
  22. 22.
    Gyurkó, L.G., Lyons, T., Kontkowski, M., Field, J.: Extracting information from the signature of a financial data stream (2013). ArXiv: 1307.7244Google Scholar
  23. 23.
    Haavelmo, T.: The Statistical Implications of a System of Simultaneous Equations. Econometrica 11(1), 1–12 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hambly, B., Lyons, T.: Uniqueness for the signature of a path of bounded variation and the reduced path group. Annals of Mathematics 171(1), 109–167 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T.: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping 28(2), 85–93 (2007)CrossRefGoogle Scholar
  26. 26.
    Lyons, T.: Rough paths, signatures and the modelling of functions on streams (2014). ArXiv: 1405.4537Google Scholar
  27. 27.
    Lyons, T.J., Caruana, M.J., Lévy, T.: Differential Equations Driven by Rough Paths. École d’Été de Probabilités de Saint-Flour. Springer-Verlag, Berlin Heidelberg (2007)Google Scholar
  28. 28.
    Lyons, T.J., Xu, W.: Hyperbolic development and inversion of signature. Journal of Functional Analysis 272(7), 2933–2955 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lyons, T.J., Xu, W.: Inverting the signature of a path. Journal of the European Mathematical Society 20(7), 1655–1687 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Moore, P.J., Gallacher, J., Lyons, T.J.: Using path signatures to predict a diagnosis of Alzheimer’s disease (2018). ArXiv: 1808.05865Google Scholar
  31. 31.
    Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., Harer, J.: Probabilistic Fréchet means for time varying persistence diagrams. Electronic Journal of Statistics 9(1), 1173–1204 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Patras, F., Thomas, J.C.: Cochain algebras of mapping spaces and finite group actions. Topology and its Applications 128(2), 189–207 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York, NY, USA (2009)zbMATHCrossRefGoogle Scholar
  34. 34.
    Perea, J.A., Harer, J.: Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis. Foundations of Computational Mathematics 15(3), 799–838 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Reizenstein, J.: Calculation of Iterated-Integral Signatures and Log Signatures (2017). ArXiv: 1712.02757Google Scholar
  36. 36.
    Reizenstein, J., Graham, B.: The iisignature library: efficient calculation of iterated-integral signatures and log signatures (2018). ArXiv: 1802.08252Google Scholar
  37. 37.
    Reutenauer, C.: Free Lie Algebras. London Mathematical Society Monographs. Oxford University Press, Oxford, New York (1993)zbMATHGoogle Scholar
  38. 38.
    Sugihara, G., May, R., Ye, H., Hsieh, C.h., Deyle, E., Fogarty, M., Munch, S.: Detecting Causality in Complex Ecosystems. Science 338(6106), 496–500 (2012)Google Scholar
  39. 39.
    Takens, F.: Detecting strange attractors in turbulence. In: D. Rand, L.S. Young (eds.) Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, pp. 366–381. Springer Berlin Heidelberg (1981)CrossRefGoogle Scholar
  40. 40.
    Wright, S.: Correlation and causation. Journal of Agricultural Research 20, 557–585 (1921)Google Scholar
  41. 41.
    Yang, W., Jin, L., Liu, M.: Deepwriterid: An end-to-end online text-independent writer identification system. IEEE Intelligent Systems 31(2), 45–53 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zimmerman, B.J., Abraham, I., Schmidt, S.A., Baryshnikov, Y., Husain, F.T.: Dissociating tinnitus patients from healthy controls using resting-state cyclicity analysis and clustering. Network Neuroscience pp. 1–23 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations