Topological Data Analysis pp 219-246 | Cite as

# Iterated Integrals and Population Time Series Analysis

- 528 Downloads

## Abstract

One of the core advantages topological methods for data analysis provide is that the language of (co)chains can be mapped onto the semantics of the data, providing a natural avenue for human understanding of the results. Here, we describe such a semantic structure on Chen’s classical iterated integral cochain model for paths in Euclidean space. Specifically, in the context of population time series data, we observe that iterated integrals provide a model-free measure of pairwise influence that can be used for causality inference. Along the way, we survey recent results and applications, review the current standard methods for causality inference, and briefly provide our outlook on generalizations to go beyond time series data.

## Notes

### Acknowledgements

D.L. is supported by the Office of the Assistant Secretary of Defense Research & Engineering through ONR N00014-16-1-2010, and the Natural Sciences and Engineering Research Council of Canada (NSERC) PGS-D3.

## References

- 1.Améndola, C., Friz, P., Sturmfels, B.: Varieties of signature tensors. Forum of Mathematics, Sigma
**7**, e10 (2019). https://doi.org/10.1017/fms.2019.3 MathSciNetzbMATHCrossRefGoogle Scholar - 2.Arribas, I.P., Goodwin, G.M., Geddes, J.R., Lyons, T., Saunders, K.E.: A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder. Translational psychiatry
**8**(1), 274 (2018)CrossRefGoogle Scholar - 3.Baez, J., Hoffnung, A.: Convenient categories of smooth spaces. Transactions of the American Mathematical Society
**363**(11), 5789–5825 (2011)MathSciNetzbMATHCrossRefGoogle Scholar - 4.Baryshnikov, Y., Schlafly, E.: Cyclicity in multivariate time series and applications to functional mri data. In: 2016 IEEE 55th conference on decision and control (CDC), pp. 1625–1630. IEEE (2016)Google Scholar
- 5.Boedihardjo, H., Ni, H., Qian, Z.: Uniqueness of signature for simple curves. Journal of Functional Analysis
**267**(6), 1778–1806 (2014)MathSciNetzbMATHCrossRefGoogle Scholar - 6.Bressler, S.L., Seth, A.K.: Wiener–granger causality: a well established methodology. Neuroimage
**58**(2), 323–329 (2011)CrossRefGoogle Scholar - 7.Chen, G., Glen, D.R., Saad, Z.S., Hamilton, J.P., Thomason, M.E., Gotlib, I.H., Cox, R.W.: Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis. Computers in biology and medicine
**41**(12), 1142–1155 (2011). https://doi.org/10.1016/j.compbiomed.2011.09.004. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223325/ - 8.Chen, K.T.: Iterated integrals and exponential homomorphisms. Proceedings of the London Mathematical Society
**3**(1), 502–512 (1954)MathSciNetzbMATHCrossRefGoogle Scholar - 9.Chen, K.T.: Integration of Paths, Geometric Invariants and a Generalized Baker-Hausdorff Formula. Annals of Mathematics
**65**(1), 163–178 (1957)zbMATHGoogle Scholar - 10.Chen, K.T.: Integration of Paths – A Faithful Representation of Paths by Noncommutative Formal Power Series. Transactions of the American Mathematical Society
**89**(2), 395–407 (1958)MathSciNetzbMATHGoogle Scholar - 11.Chen, K.T.: Iterated path integrals. Bulletin of the American Mathematical Society
**83**(5), 831–879 (1977)MathSciNetzbMATHCrossRefGoogle Scholar - 12.Chevyrev, I., Kormilitzin, A.: A Primer on the Signature Method in Machine Learning (2016). ArXiv: 1603.03788Google Scholar
- 13.Chevyrev, I., Nanda, V., Oberhauser, H.: Persistence paths and signature features in topological data analysis. IEEE transactions on pattern analysis and machine intelligence (2018)Google Scholar
- 14.Chevyrev, I., Oberhauser, H.: Signature moments to characterize laws of stochastic processes (2018). ArXiv: 1810.10971Google Scholar
- 15.Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and Vineyards by Updating Persistence in Linear Time. In: Proceedings of the Twenty-second Annual Symposium on Computational Geometry, SCG ’06, pp. 119–126. ACM, New York, NY, USA (2006)Google Scholar
- 16.Cummins, B., Gedeon, T., Spendlove, K.: On the Efficacy of State Space Reconstruction Methods in Determining Causality. SIAM Journal on Applied Dynamical Systems
**14**(1), 335–381 (2015)MathSciNetzbMATHCrossRefGoogle Scholar - 17.Félix, Y., Oprea, J., Tanré, D.: Algebraic Models in Geometry. Oxford University Press (2008)Google Scholar
- 18.Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2010)zbMATHCrossRefGoogle Scholar
- 19.Ghrist, R.: Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society
**45**(1), 61–75 (2008)MathSciNetzbMATHCrossRefGoogle Scholar - 20.Ginot, G., Tradler, T., Zeinalian, M.: A chen model for mapping spaces and the surface product. Annales scientifiques de l’École Normale Supérieure
**Ser. 4, 43**(5), 811–881 (2010)Google Scholar - 21.Granger, C.W.J.: Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica
**37**(3), 424–438 (1969)zbMATHCrossRefGoogle Scholar - 22.Gyurkó, L.G., Lyons, T., Kontkowski, M., Field, J.: Extracting information from the signature of a financial data stream (2013). ArXiv: 1307.7244Google Scholar
- 23.Haavelmo, T.: The Statistical Implications of a System of Simultaneous Equations. Econometrica
**11**(1), 1–12 (1943)MathSciNetzbMATHCrossRefGoogle Scholar - 24.Hambly, B., Lyons, T.: Uniqueness for the signature of a path of bounded variation and the reduced path group. Annals of Mathematics
**171**(1), 109–167 (2010)MathSciNetzbMATHCrossRefGoogle Scholar - 25.Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T.: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping
**28**(2), 85–93 (2007)CrossRefGoogle Scholar - 26.Lyons, T.: Rough paths, signatures and the modelling of functions on streams (2014). ArXiv: 1405.4537Google Scholar
- 27.Lyons, T.J., Caruana, M.J., Lévy, T.: Differential Equations Driven by Rough Paths. École d’Été de Probabilités de Saint-Flour. Springer-Verlag, Berlin Heidelberg (2007)Google Scholar
- 28.Lyons, T.J., Xu, W.: Hyperbolic development and inversion of signature. Journal of Functional Analysis
**272**(7), 2933–2955 (2017)MathSciNetzbMATHCrossRefGoogle Scholar - 29.Lyons, T.J., Xu, W.: Inverting the signature of a path. Journal of the European Mathematical Society
**20**(7), 1655–1687 (2018)MathSciNetzbMATHCrossRefGoogle Scholar - 30.Moore, P.J., Gallacher, J., Lyons, T.J.: Using path signatures to predict a diagnosis of Alzheimer’s disease (2018). ArXiv: 1808.05865Google Scholar
- 31.Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., Harer, J.: Probabilistic Fréchet means for time varying persistence diagrams. Electronic Journal of Statistics
**9**(1), 1173–1204 (2015)MathSciNetzbMATHCrossRefGoogle Scholar - 32.Patras, F., Thomas, J.C.: Cochain algebras of mapping spaces and finite group actions. Topology and its Applications
**128**(2), 189–207 (2003)MathSciNetzbMATHCrossRefGoogle Scholar - 33.Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York, NY, USA (2009)zbMATHCrossRefGoogle Scholar
- 34.Perea, J.A., Harer, J.: Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis. Foundations of Computational Mathematics
**15**(3), 799–838 (2015)MathSciNetzbMATHCrossRefGoogle Scholar - 35.Reizenstein, J.: Calculation of Iterated-Integral Signatures and Log Signatures (2017). ArXiv: 1712.02757Google Scholar
- 36.Reizenstein, J., Graham, B.: The iisignature library: efficient calculation of iterated-integral signatures and log signatures (2018). ArXiv: 1802.08252Google Scholar
- 37.Reutenauer, C.: Free Lie Algebras. London Mathematical Society Monographs. Oxford University Press, Oxford, New York (1993)zbMATHGoogle Scholar
- 38.Sugihara, G., May, R., Ye, H., Hsieh, C.h., Deyle, E., Fogarty, M., Munch, S.: Detecting Causality in Complex Ecosystems. Science
**338**(6106), 496–500 (2012)Google Scholar - 39.Takens, F.: Detecting strange attractors in turbulence. In: D. Rand, L.S. Young (eds.) Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, pp. 366–381. Springer Berlin Heidelberg (1981)CrossRefGoogle Scholar
- 40.Wright, S.: Correlation and causation. Journal of Agricultural Research
**20**, 557–585 (1921)Google Scholar - 41.Yang, W., Jin, L., Liu, M.: Deepwriterid: An end-to-end online text-independent writer identification system. IEEE Intelligent Systems
**31**(2), 45–53 (2016)MathSciNetCrossRefGoogle Scholar - 42.Zimmerman, B.J., Abraham, I., Schmidt, S.A., Baryshnikov, Y., Husain, F.T.: Dissociating tinnitus patients from healthy controls using resting-state cyclicity analysis and clustering. Network Neuroscience pp. 1–23 (2018)Google Scholar