Skip to main content

Sparse Circular Coordinates via Principal \(\mathbb {Z}\)-Bundles

  • Conference paper
  • First Online:
Topological Data Analysis

Part of the book series: Abel Symposia ((ABEL,volume 15))

Abstract

We present in this paper an application of the theory of principal bundles to the problem of nonlinear dimensionality reduction in data analysis. More explicitly, we derive, from a 1-dimensional persistent cohomology computation, explicit formulas for circle-valued functions on data with nontrivial underlying topology. We show that the language of principal bundles leads to coordinates defined on an open neighborhood of the data, but computed using only a smaller subset of landmarks. It is in this sense that the coordinates are sparse. Several data examples are presented, as well as theoretical results underlying the construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    So that partitions of unity always exist.

  2. 2.

    That is, so that support(φ j) ⊂closure(U j) for all j ∈ J.

  3. 3.

    That is, we use the harmonic cocycle representative for appropriate inner products on cochains.

References

  1. Bauer., U.: Ripser: a lean C++ code for the computation of Vietoris-Rips persistence barcodes. 2017. Software: https://github.com/Ripser/ripser.

  2. Belkin, M., Niyogi P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15 (6) , 1373–1396 (2003)

    Article  Google Scholar 

  3. Ben-Israel, A., Greville, T. N.: Generalized inverses: theory and applications, volume 15. Springer Science & Business Media, (2003)

    MATH  Google Scholar 

  4. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. International journal of computer vision, 76 (1) , 1–12, (2008)

    Article  MathSciNet  Google Scholar 

  5. de Silva V., Carlsson, G. E.: Topological estimation using witness complexes. SPBG, 4 , 157–166, (2004)

    Google Scholar 

  6. de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete & Computational Geometry, 45 (4) , 737–759, (2011)

    Article  MathSciNet  Google Scholar 

  7. de Silva, V., Skraba, P., Vejdemo-Johansson, M.: Topological analysis of recurrent systems. In Workshop on Algebraic Topology and Machine Learning, NIPS, (2012)

    Google Scholar 

  8. v. Hateren, J. H., v. d. Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. In Proceedings: Biological Sciences, 265 (1394) , 359–366, (1998)

    Google Scholar 

  9. Husemoller, D.: Fibre bundles, volume 5. Springer, (1966)

    Book  Google Scholar 

  10. Jolliffe, I.: Principal component analysis. Wiley Online Library, (2002)

    MATH  Google Scholar 

  11. Kruskal, J. B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29 (1) , 1–27, (1964)

    Article  MathSciNet  Google Scholar 

  12. Lee, A. B., Pedersen, K. S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. International Journal of Computer Vision, 54 (1–3) , 83–103, (2003)

    Article  Google Scholar 

  13. Milnor, J.: Construction of universal bundles, ii. Annals of Mathematics, pages 430–436, (1956)

    Google Scholar 

  14. Miranda, R.: Algebraic curves and Riemann surfaces, volume 5. American Mathematical Soc., (1995)

    MATH  Google Scholar 

  15. Nene, S. A., Nayar, S. K., Murase, H., et al: Columbia object image library (coil-20). 1996. Data available at http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

  16. Perea, J. A.: A brief history of persistence. Morfismos, 23(1), 1–16, (2019)

    MathSciNet  Google Scholar 

  17. Perea, J. A.: Multiscale projective coordinates via persistent cohomology of sparse filtrations. Discrete & Computational Geometry, 59 (1) , 175–225, (2018)

    Article  MathSciNet  Google Scholar 

  18. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning Research, 11 (Sep) , 2487–2531, (2010)

    MathSciNet  MATH  Google Scholar 

  19. Roweis, S. T., Saul, L. K.: Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (5500) , 2323–2326, (2000)

    Article  Google Scholar 

  20. Rybakken, E., Baas, N., Dunn, B.: Decoding of neural data using cohomological learning. Neural computation 31(1), 68–93, (2019)

    Article  MathSciNet  Google Scholar 

  21. Singh, G., Mémoli, F., Carlsson, G. E.: Topological methods for the analysis of high dimensional data sets and 3d object recognition. In SPBG, pages 91–100, (2007)

    Google Scholar 

  22. Tenenbaum, J. B., de Silva, V., Langford, J. C.: A global geometric framework for nonlinear dimensionality reduction. Science, 290 (5500) , 2319–2323, (2000)

    Article  Google Scholar 

  23. Tralie, C. J., Berger, M.: Topological Eulerian synthesis of slow motion periodic videos. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pages 3573–3577, (2018)

    Google Scholar 

  24. Xu, B., Tralie, C. J., Antia, A., Lin, M., Perea, J. A.: Twisty Takens: A geometric characterization of good observations on dense trajectories. Journal of Applied and Computational Topology, (2019). https://doi.org/10.1007/s41468-019-00036-9

Download references

Acknowledgements

This work was partially supported by the NSF under grant DMS-1622301 and DARPA under grant HR0011-16-2-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Perea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perea, J.A. (2020). Sparse Circular Coordinates via Principal \(\mathbb {Z}\)-Bundles. In: Baas, N., Carlsson, G., Quick, G., Szymik, M., Thaule, M. (eds) Topological Data Analysis. Abel Symposia, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-43408-3_17

Download citation

Publish with us

Policies and ethics