Skip to main content

Intracortical Brain–Machine Interfaces

  • Chapter
  • First Online:
Neural Engineering

Abstract

A brain–machine interface, or BMI, directly connects the brain to the external world, bypassing damaged biological pathways. It replaces the impaired parts of the nervous system with hardware and software that translate a user’s internal motor commands into action. In this chapter, we will discuss the four basic components of an intracortical BMI: an intracortical neural recording, a decoding algorithm, an output device, and sensory feedback. In Sect. 5.2 we will discuss intracortical signals, the electrodes used to record them, and where in the brain to record them. The salient features of the neural signal useful for control are extracted with a decoding algorithm. This algorithm translates the neural signal into an intended action which is executed by an output device, such as a robotic limb, the person’s own muscles, or a computer interface. In Sect. 5.3 we will discuss classification decoders and how they can be implemented in a BMI for communication. In Sect. 5.4 we will discuss continuous decoders for moment-by-moment control of a computer cursor or robotic arm. In Sect. 5.5, we will discuss a BMI that controls electrical stimulation to directly activate a patient’s own paralyzed muscles and reanimate their arm. Finally, in Sect. 5.6, we will discuss ongoing work toward expanding sensory feedback with the goal of making intracortical BMIs a clinically viable option for treating paralysis, as well as other research trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.K. Chapin, K.A. Moxon, R.S. Markowitz, M.A. Nicolelis, Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2(7), 664–670 (1999). https://doi.org/10.1038/10223

    Article  CAS  Google Scholar 

  2. J. Wessberg, C.R. Stambaugh, J.D. Kralik, P.D. Beck, M. Laubach, J.K. Chapin, J. Kim, S.J. Biggs, M.A. Srinivasan, M.A. Nicolelis, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810), 361–365 (2000). https://doi.org/10.1038/35042582

    Article  CAS  Google Scholar 

  3. M.D. Serruya, N.G. Hatsopoulos, L. Paninski, M.R. Fellows, J.P. Donoghue, Instant neural control of a movement signal. Nature 416(6877), 141–142 (2002). https://doi.org/10.1038/416141a

    Article  CAS  Google Scholar 

  4. D.M. Taylor, S.I. Helms Tillery, A.B. Schwartz, Direct Cortical Control of 3D Neuroprosthetic Devices. Science (New York, N.Y.) 296(5574), 1829–1832 (2002). https://doi.org/10.1126/science.1070291

    Article  CAS  Google Scholar 

  5. J.M. Carmena, M.A. Lebedev, R.E. Crist, J.E. O’Doherty, D.M. Santucci, D.F. Dimitrov, P.G. Patil, C.S. Henriquez, M.A.L. Nicolelis, Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), E42 (2003). https://doi.org/10.1371/journal.pbio.0000042

    Article  CAS  Google Scholar 

  6. J.L. Collinger, B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, A.J.C. McMorland, M. Velliste, M.L. Boninger, A.B. Schwartz, High-performance neuroprosthetic control by an individual with tetraplegia. Lancet (London, England) 381(9866), 557–564 (2013). https://doi.org/10.1016/S0140-6736(12)61816-9

    Article  Google Scholar 

  7. B. Wodlinger, J.E. Downey, E.C. Tyler-Kabara, A.B. Schwartz, M.L. Boninger, J.L. Collinger, Ten-dimensional anthropomorphic arm control in a human brain-machine interface: Difficulties, solutions, and limitations. J. Neural Eng. 12(1), 016011 (2015). https://doi.org/10.1088/1741-2560/12/1/016011

    Article  CAS  Google Scholar 

  8. C.E. Bouton, A. Shaikhouni, N.V. Annetta, M.A. Bockbrader, D.A. Friedenberg, D.M. Nielson, G. Sharma, P.B. Sederber, B.C. Glenn, W.J. Mysiw, A.G. Morgan, M. Deogaonkar, A.R. Rezai, Restoring cortical control of functional movement in a human with quadriplegia. Nature 533(7602), 247–250 (2016). https://doi.org/10.1038/nature17435

    Article  CAS  Google Scholar 

  9. A.B. Ajiboye, F.R. Willett, D.R. Young, W.D. Memberg, B.A. Murphy, J.P. Miller, B.L. Walter, et al., Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration. Lancet (London, England) 389(10081), 1821–1830 (2017). https://doi.org/10.1016/S0140-6736(17)30601-3

    Article  Google Scholar 

  10. V. Gilja, C. Pandarinath, C.H. Blabe, P. Nuyujukian, J.D. Simeral, A.A. Sarma, B.L. Sorice, et al., Clinical translation of a high-performance neural prosthesis. Nat. Med. 21(10), 1142–1145 (2015). https://doi.org/10.1038/nm.3953

    Article  CAS  Google Scholar 

  11. B. Jarosiewicz, A.A. Sarma, D. Bacher, N.Y. Masse, J.D. Simeral, B. Sorice, E.M. Oakley, et al., Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 7(313), 313ra179 (2015). https://doi.org/10.1126/scitranslmed.aac7328

    Article  CAS  Google Scholar 

  12. C. Pandarinath, P. Nuyujukian, C.H. Blabe, B.L. Sorice, J. Saab, F.R. Willett, L.R. Hochberg, K.V. Shenoy, J.M. Henderson, High performance communication by people with paralysis using an intracortical brain-computer interface. elife 6 (2017). https://doi.org/10.7554/eLife.18554

  13. S. Perel, P.T. Sadtler, E.R. Oby, S.I. Ryu, E.C. Tyler-Kabara, A.P. Batista, S.M. Chase, Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics. J. Neurophysiol. 114(3), 1500–1512 (2015). https://doi.org/10.1152/jn.00293.2014

    Article  Google Scholar 

  14. E.V. Evarts, Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31(1), 14–27 (1968). https://doi.org/10.1152/jn.1968.31.1.14

    Article  CAS  Google Scholar 

  15. A.P. Georgopoulos, J.F. Kalaska, R. Caminiti, J.T. Massey, On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. Off. J. Soc. Neurosci. 2(11), 1527–1537 (1982)

    Article  CAS  Google Scholar 

  16. N. Hatsopoulos, J. Joshi, J.G. O’Leary, Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. 92(2), 1165–1174 (2004). https://doi.org/10.1152/jn.01245.2003

    Article  Google Scholar 

  17. S. Kakei, D.S. Hoffman, P.L. Strick, Direction of action is represented in the ventral premotor cortex. Nat. Neurosci. 4(10), 1020–1025 (2001). https://doi.org/10.1038/nn726

    Article  CAS  Google Scholar 

  18. G. Santhanam, S.I. Ryu, B.M. Yu, A. Afshar, K.V. Shenoy, A high-performance brain-computer interface. Nature 442(7099), 195–198 (2006). https://doi.org/10.1038/nature04968

    Article  CAS  Google Scholar 

  19. M. Velliste, P. Sagi, M. Chance Spalding, A.S. Whitford, A.B. Schwartz, Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098–1101 (2008). https://doi.org/10.1038/nature06996

    Article  CAS  Google Scholar 

  20. K.V. Shenoy, D. Meeker, S. Cao, S.A. Kureshi, B. Pesaran, C.A. Buneo, A.P. Batista, P.P. Mitra, J.W. Burdick, R.A. Andersen, Neural prosthetic control signals from plan activity. Neuroreport 14(4), 591–596 (2003). https://doi.org/10.1097/00001756-200303240-00013

    Article  Google Scholar 

  21. S.M. Chase, A.B. Schwartz, R.E. Kass, Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer Interface algorithms. Neural Netw. 22(9), 1203–1213 (2009). https://doi.org/10.1016/j.neunet.2009.05.005

    Article  Google Scholar 

  22. V. Gilja, P. Nuyujukian, C.A. Chestek, J.P. Cunningham, B.M. Yu, J.M. Fan, M.M. Churchland, et al., A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15(12), 1752–1757 (2012). https://doi.org/10.1038/nn.3265

    Article  CAS  Google Scholar 

  23. C. Long, An electrophysiologic splint for the hand. Arch. Phys. Med. Rehabil. 44(September), 499–503 (1963)

    Google Scholar 

  24. L. Vodovnik, C. Long, J.B. Reswick, A. Lippay, D. Starbuck, Myo-electric control of paralyzed muscles. I.E.E.E. Trans. Biomed. Eng. 12(3), 169–172 (1965). https://doi.org/10.1109/tbme.1965.4502374

    Article  CAS  Google Scholar 

  25. C.T. Moritz, E.E. Fetz, Volitional control of single cortical neurons in a brain-machine interface. J. Neural Eng. 8(2), 025017 (2011). https://doi.org/10.1088/1741-2560/8/2/025017

    Article  Google Scholar 

  26. E.A. Pohlmeyer, S.A. Solla, E.J. Perreault, L.E. Miller, Prediction of upper limb muscle activity from motor cortical discharge during reaching. J. Neural Eng. 4(4), 369–379 (2007). https://doi.org/10.1088/1741-2560/4/4/003

    Article  Google Scholar 

  27. C. Ethier, E.R. Oby, M.J. Bauman, L.E. Miller, Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485(7398), 368–371 (2012). https://doi.org/10.1038/nature10987

    Article  CAS  Google Scholar 

  28. C. Ethier, D. Acuna, S.A. Solla, L.E. Miller, Adaptive neuron-to-EMG decoder training for FES neuroprostheses. J. Neural Eng. 13(4), 046009 (2016). https://doi.org/10.1088/1741-2560/13/4/046009

    Article  Google Scholar 

  29. K. Singh, F.J. Richmond, G.E. Loeb, Recruitment properties of intramuscular and nerve-trunk stimulating electrodes. IEEE Trans. Rehabil. Eng. 8(3), 276–285 (2000)

    Article  CAS  Google Scholar 

  30. J.T. Mortimer, Motor prostheses, in Handbook of physiology: The nervous system II, (American Physiological Society, Bethesda, MD, 1981)

    Google Scholar 

  31. S.J. Bensmaia, L.E. Miller, Restoring sensorimotor function through intracortical interfaces: Progress and looming challenges. Nat. Rev. Neurosci. 15(5), 313–325 (2014). https://doi.org/10.1038/nrn3724

    Article  CAS  Google Scholar 

  32. M.C. Dadarlat, J.E. O’Doherty, P.N. Sabes, A learning-based approach to artificial sensory feedback leads to optimal integration. Nat. Neurosci. 18(1), 138–144 (2015). https://doi.org/10.1038/nn.3883

    Article  CAS  Google Scholar 

  33. S.N. Flesher, J.L. Collinger, S.T. Foldes, J.M. Weiss, J.E. Downey, E.C. Tyler-Kabara, S.J. Bensmaia, A.B. Schwartz, M.L. Boninger, R.A. Gaunt, Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8(361), 361ra141 (2016). https://doi.org/10.1126/scitranslmed.aaf8083

    Article  Google Scholar 

  34. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005). https://doi.org/10.1016/j.jneumeth.2005.08.015

    Article  Google Scholar 

  35. J.R. Eles, A.L. Vazquez, N.R. Snyder, C. Lagenaur, M.C. Murphy, T.D.Y. Kozai, X.T. Cui, Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 113, 279–292 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.054

    Article  CAS  Google Scholar 

  36. T.L. Hanson, C.A. Diaz-Botia, V. Kharazia, M.M. Maharbiz, P.N. Sabes, The ‘sewing machine’ for minimally invasive neural recording. BioRxiv, March. https://doi.org/10.1101/578542 (2019)

  37. M.D. Golub, S.M. Chase, A.P. Batista, B.M. Yu, Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control. Curr. Opin. Neurobiol. 37(April), 53–58 (2016). https://doi.org/10.1016/j.conb.2015.12.005

    Article  CAS  Google Scholar 

  38. K. Ganguly, J.M. Carmena, Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7(7), e1000153 (2009). https://doi.org/10.1371/journal.pbio.1000153

    Article  CAS  Google Scholar 

  39. P.T. Sadtler, K.M. Quick, M.D. Golub, S.M. Chase, S.I. Ryu, E.C. Tyler-Kabara, B.M. Yu, A.P. Batista, Neural constraints on learning. Nature 512(7515), 423–426 (2014). https://doi.org/10.1038/nature13665

    Article  CAS  Google Scholar 

  40. E.R. Oby, M.D. Golub, J.A. Hennig, A.D. Degenhart, E.C. Tyler-Kabara, B.M. Yu, S.M. Chase, A.P. Batista, New neural activity patterns emerge with long-term learning. Proc. Natl. Acad. Sci. U. S. A. 116(30), 15210–15215 (2019). https://doi.org/10.1073/pnas.1820296116

    Article  CAS  Google Scholar 

  41. K.V. Shenoy, J.M. Carmena, Combining decoder design and neural adaptation in brain-machine interfaces. Neuron 84(4), 665–680 (2014). https://doi.org/10.1016/j.neuron.2014.08.038

    Article  CAS  Google Scholar 

  42. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 442(7099), 164–71 (2006).

    Google Scholar 

  43. L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. Van Der Smagt, J.P. Donoghue. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485(7398), 372–5 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Chase .

Editor information

Editors and Affiliations

Homework

Homework

  1. 1.

    Consider designing a BMI to classify movement to the right or left, and we want to test how well it works with one neuron. If the BMI user intends to move right, the neuron’s firing rate is drawn from a Gaussian distribution with mean μright = 8 spikes/second and standard deviation σ right = 5 spikes/second. If the BMI user intends to move left, the neuron’s firing rate is drawn from a Gaussian distribution with mean μleft = 12 spikes/second and standard deviation σ left = 6 spikes/second.

    1. (a)

      Suppose we make one measurement of the firing rate, y, and we assume the prior probability of “left” and “right” are equal. For each of the cases below, would we classify “left” or “right”?

      y (Spikes/second)

      2

      5

      8

      11

      14

      17

      Classification

            
    2. (b)

      Suppose we now assume that the BMI user moves “left” twice as often as “right” (i.e., P(left) = 2/3 and P(right) = 1/3. For each of the cases below, would we classify “left” or “right”?

      y (Spikes/second)

      2

      5

      8

      11

      14

      17

      Classification

            
  2. 2.

    In Sect. 5.3 we showed how to implement a classifier with Gaussian firing statistics, where the neural activity for class k is modeled as yN(μ k, Σk), where μ k ∈ R d and Σk ∈ R d × d are the mean and covariance of the activity of a population of d neurons. Here we will assume that the covariance matrix is the same for each class k = 1, …, K (i.e., Σ1 = Σ2 = … = ΣK).

    1. (a)

      First, suppose we have a new recording of neural activity, y. Also, suppose that P(c k) = π k. Using Bayes’rule, find logP(c k| y), up to the normalizing constant.

    2. (b)

      Find the decision boundary used for determining whether the point y came from class j or class k, and simplify the expression.

    3. (c)

      Is the decision boundary linear?

  3. 3.

    In this problem we will derive the equations to implement a classifier based on Poisson spike counts. The spike count of neuron i given class k is Poisson-distributed with parameter λik. We will assume that the D neurons, y 1, …, y D are conditionally independent given the class j. In other words, given neural activity y ∈ RD, the probability that y came from class k is as follows:

    $$ P\left(\boldsymbol{y}|{c}_k\right)={\prod}_{\mathrm{i}=1}^DP\left({y}_i|{c}_k\right),\kern0.5em \mathrm{where} $$
    $$ P\left({y}_i|{c}_k\right)=\exp \left(-{\uplambda}_{ik}\right){\uplambda}_{ik}^{y_i}/{y}_i! $$
    1. (a)

      Let P(c k) = π k. Find P(c k| y) using Bayes rule.

    Now simplify the expression above by taking the log: log P(c k | y).

    1. (b)

      Given a new point y, we want to determine to which class this point belongs. Derive the decision boundary that determines whether we classify a new point y as belonging to either class j or class k. Use the expression that you derived in part a.

    2. (c)

      Is the decision boundary linear?

  4. 4.

    In Sect. 5.3 we provided the following expressions for the training phase of a classifier: \( {\boldsymbol{\upmu}}_k=\frac{1}{N}{\sum}_{i=1}^N{\boldsymbol{y}}_i \) (Eq. 5.9) and \( {\Sigma}_k=\frac{1}{N}{\sum}_{i=1}^N\left({\boldsymbol{y}}_i-{\boldsymbol{\upmu}}_k\right){\left({\boldsymbol{y}}_i-{\boldsymbol{\upmu}}_k\right)}^{\top } \)(Eq. 5.10), where y i ∈ R d for all i = 1, …, N is the neural activity recorded with class k, μ k ∈ R d, and Σk ∈ R d × d. Show that these values of μ k and Σk maximize the following equation for the likelihood:

    $${\renewcommand\theequation{\normalsize\thechapter.\arabic{equation}} {\begin{array}{lll}& L\left({\boldsymbol{\mu}}_k,{\Sigma}_k\ |{\boldsymbol{y}}_1,\dots, {\boldsymbol{y}}_{N,}{c}_k\right) =P\left({\boldsymbol{y}}_1,\dots, {\boldsymbol{y}}_N\ |{c}_k\right)\end{array}}}$$
    $$\begin{array}{ll}&={\prod}_{i=1}^N{\left(2\pi \right)}^{-d/2}{\left|{\Sigma}_k\right|}^{-1/2}\\&\exp \left(-\frac{1}{2}{\left({\boldsymbol{y}}_i-{\boldsymbol{\mu}}_k\right)}^{\top }{\Sigma_k}^{-1}\left({\boldsymbol{y}}_i-{\boldsymbol{\mu}}_k\right)\right)\end{array}$$
  5. 5.

    In Sect. 5.4, we considered a two-neuron example of the PVA decoder where the neurons had orthogonal preferred directions (e.g., one neuron preferred 90°, while the other neuron preferred 180°). Show that if the two neurons do not have orthogonal tuning directions, the directions decoded by PVA will be biased.

  6. 6.

    Show that a neuron that exhibits cosine tuning also shows linear tuning to velocity. That is, suppose that given a reach in the θ direction with speed s, a neuron’s firing rate can be written as \( y={b}_0+ ms\ \cos \left(\theta -{\theta}_{\overrightarrow{p}}\right) \), where b 0 is the neuron’s baseline firing rate, m is its modulation depth, and \( {\theta}_{\overrightarrow{p}} \) is the neuron’s preferred direction. Show that this means we can also write y = b0 + b Tv, where b and v are both 2D vectors.

  7. 7.

    Derive the expressions for the training phase of the Kalman filter in Sect. 5.4:

    • \( B=\left(\sum_{t=1}^T{\mathbf{y}}_t{\mathbf{x}}_t^T\right){\left(\sum_{t=1}^T{\mathbf{x}}_t{\mathbf{x}}_t^T\right)}^{-1} \)

    • \( \Sigma\!\!\!\!=\!\!\!\!\frac{1}{T}\sum_{t=1}^T\left({\mathbf{y}}_t-B{\mathbf{x}}_t\right){\left({\mathbf{y}}_t-B{\mathbf{x}}_t\right)}^T \) (Note that here we use the B found above.)

    • \( A=\left(\sum_{t=2}^T{\boldsymbol{x}}_t{\boldsymbol{x}}_{t-1}^T\right){\left(\sum_{t=2}^T{\boldsymbol{x}}_{t-1}{\boldsymbol{x}}_{t-1}^T\right)}^{-1} \)

    • \( Q\!=\!\frac{1}{T-1}\sum_{t=2}^T\left({\boldsymbol{x}}_t-A{\boldsymbol{x}}_{t-1}\right){\left({\boldsymbol{x}}_t\!-\!A{\boldsymbol{x}}_{t-1}\right)}^T \) (Note that here we use the A found above.)

  8. 8.

    Consider using a BMI to play Pong with one neuron. That is, we will use a Kalman filter to decode position along a one-dimensional axis from the firing rate of a single neuron. Let the state model be x t = x t − 1 + ωt, ωtN(0, q) and the observation model be y t = bx t + εt, εtN(0, σ).

    1. (a)

      Show that the estimate of the position on time step t, μ t, can be written in the form

    $$ {\mu}_t=\left(1-\alpha \right){\mu}_{t-1}+\alpha \left(\frac{{\mathrm{y}}_t}{\mathrm{b}}\right) $$
    1. (b)

      Prove that 0 ≤ α ≤ 1.

    2. (c)

      When does α approach 0? Under this case, why does it make sense for μ t = μ t − 1?

    3. (d)

      When does α approach 1? Under this case, why does it make sense for μ t = y t/b?

  9. 9.

    You decide to speed up the implementation of your Kalman filter by skipping the one-step prediction. Whereas normally you would solve the measurement update (Eq. 5.17) and one-step predictions iteratively on each time step (Eq. 5.16).

    • One-step prediction: \( P\left({\boldsymbol{x}}_t|{\left\{\boldsymbol{y}\right\}}_1^{t-1}\right)=\int P\left({\boldsymbol{x}}_t|{\boldsymbol{x}}_{t-1}\right)P\left({\boldsymbol{x}}_{t-1}|{\left\{\mathbf{y}\right\}}_1^{t-1}\right){d\boldsymbol{x}}_{t-1.} \)

    • Measurement update: \( P\left({\boldsymbol{x}}_t|{\left\{\boldsymbol{y}\right\}}_1^t\right)=\frac{P\left({\boldsymbol{y}}_t|{\boldsymbol{x}}_t\right)P\left({\boldsymbol{x}}_t|{\left\{\boldsymbol{y}\right\}}_1^{t-1}\right)}{P\left({\boldsymbol{y}}_t|{\left\{\boldsymbol{y}\right\}}_1^{t-1}\right)} \)

    You instead decide to just iterate the measurement update step, by directly plugging in the velocity estimate from the previous time step, P \( \left({\boldsymbol{x}}_{t-1}|{\left\{\boldsymbol{y}\right\}}_1^{t-1}\right) \), without making a one-step prediction:

    $$ P\left({\boldsymbol{x}}_t|{\left\{\boldsymbol{y}\right\}}_1^t\right)=\frac{P\left({\boldsymbol{y}}_t|{\boldsymbol{x}}_t\right)P\left({\boldsymbol{x}}_{t-1}|{\left\{\boldsymbol{y}\right\}}_1^{t-1}\right)}{P\left({\boldsymbol{y}}_t|{\left\{\boldsymbol{y}\right\}}_1^{t-1}\right)} $$

    Describe qualitatively what will happen to the velocity estimate over time.

    (Hint: when in doubt, try simulating it or solving the 1D case.)

  10. 10.

    The goal of the measurement update of the Kalman filter is to find P(x t| y 1, …, y t). To do so, we adopted the strategy in Sect. 5.4 whereby we would first find the joint distribution P(x t, y t| y 1, …, y t − 1), and then use the theorem of conditioning for jointly Gaussian random variables to find P(x t| y 1, …, y t). Here we will derive the means and covariances of the joint distribution

    $$\left[\begin{array}{l}\boldsymbol{y}_t\mid \boldsymbol{y}_1,\dots, \boldsymbol{y}_{t-1} \\ \boldsymbol{x}_t\mid \boldsymbol{y}_1,\dots, \boldsymbol{y}_{t-1}\end{array}\right] \sim \mathrm{N}\left(\left[\genfrac{}{}{0pt}{}{B\boldsymbol{\mu}_{\mathrm{t}}^{-}}{\boldsymbol{\mu}_{\mathrm{t}}^{-}}\right],\left[\genfrac{}{}{0pt}{}{B{\varPhi}_t^{-}{B}^{\mathrm{T}}+\Sigma}{\varPhi_t^{-}{B}^{\mathrm{T}}}\genfrac{}{}{0pt}{}{\ B{\varPhi}_t^{-}}{\ {\varPhi}_t^{-}}\right]\right)$$
    1. (a)

      Find the mean of \( \boldsymbol{y}_{t}\mid \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{t-1} \).

    2. (b)

      Find the variance of \( \boldsymbol{y}_{t}\mid \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{t-1} \).

    3. (c)

      Find the covariance of x t, y t when both are conditioned on y t, …, y t − 1.

    11–12. We have provided a dataset (https://github.com/emilyoby/bmi-data-set) consisting of center-out arm reaches and neural activity recorded from a Utah electrode array implanted in M1. The following describes the data format. The .mat file has two data structures: ‘trainTrials’ contains 180 trials to be used as training data, and testTrials contains 8 trials to be used as test data. Each data structure contains ‘spikes’, ‘handPos’, and ‘handVel’ variables, representing the spiking activity, hand position, and hand velocity, respectively, on each trial in which a monkey reached to one of eight different targets. The ‘spikes’ variable contains, for each trial, the number of threshold crossings in 50 ms bins recorded simultaneously from the 91 electrodes and has dimensions (n time steps) × (91 electrodes), where n is the number of time steps within a particular trial. For example, ‘trainTrials.spikes{i}(n,k)’ contains the number of threshold crossings recorded on the kth electrode in the nth time step of the ith trial. The ‘handPos’ and ‘handVel’ variables are structured similarly and contain the 2D hand position (in mm) and velocity (in mm/sec), respectively, for the same time steps as in the ‘spikes’ variable.

    For the problems below, use the provided neural and kinematic data to implement the continuous decoders discussed in Sect. 5.4.

  11. 11.

    Use PVA decoder to estimate the movement velocity during a center out task.

    1. (a)

      Fit the parameters of the decoder using the 180 trials of training data.

    2. (b)

      Test the decoder on the eight test trials. Plot the decoded trajectories and the actual movement trajectories on the same plot.

    3. (c)

      Try improving the decoding by smoothing the firing rates by using a running average of the firing rates during the previous 250 ms.

  12. 12.

    Use a Kalman filter decoder to estimate the movement trajectory for each trial.

    1. (a)

      Fit the parameters of the decoder using the 180 trials of training data.

    2. (b)

      Test the decoder on the eight test trials. Plot the decoded trajectories and the actual movement trajectories on the same plot.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oby, E.R., Hennig, J.A., Batista, A.P., Yu, B.M., Chase, S.M. (2020). Intracortical Brain–Machine Interfaces. In: He, B. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-43395-6_5

Download citation

Publish with us

Policies and ethics