Skip to main content

Sharpe Portfolio Using a Cross-Efficiency Evaluation

  • Chapter
  • First Online:
Data Science and Productivity Analytics

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 290))

Abstract

The Sharpe ratio is a way to compare the excess returns (over the risk-free asset) of portfolios for each unit of volatility that is generated by a portfolio. In this paper, we introduce a robust Sharpe ratio portfolio under the assumption that the risk-free asset is unknown. We propose a robust portfolio that maximizes the Sharpe ratio when the risk-free asset is unknown, but is within a given interval. To compute the best Sharpe ratio portfolio, all the Sharpe ratios for any risk-free asset are considered and compared by using the so-called cross-efficiency evaluation. An explicit expression of the Cross-Efficiency Sharpe Ratio portfolio is presented when short selling is allowed.

A previous version of this manuscript is available on arXiv.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Artzener, P., Delbaen, F., Eber, J. M., & Heth, D. (1999). Coherent measures of risk. Mathematical Finance, 3, 203–228.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25, 1–13.

    Article  Google Scholar 

  • Bertsimas, D., & Pachamanova, D. (2008). Robust multiperiod portfolio management in the presence of transaction cost. Computers and Operations Research, 35, 3–17.

    Article  Google Scholar 

  • Chapados, N. (2011). Portfolio choice problems: An introductory survey of single and multiperiod models. Springer.

    Google Scholar 

  • Charnes, A., Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2, 429–444.

    Google Scholar 

  • DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus Naive diversification: How inefficient is the 1/N portfolio strategy? Review of Financial Studies, 18, 1219–1251.

    Google Scholar 

  • Diez, D., & Christou, N. StockPortfolio package. http://cran.r-project.org/web/packages/stockPortfolio/stockPortfolio.pdf

  • Doyle, J. R., & Green, R. (1994). Efficiency and cross-efficiency in data envelopment analysis: Derivatives, meanings and uses. Journal of the Operational Research Society, 45, 567–578.

    Article  Google Scholar 

  • Galagedera, D. U. A. (2013). A new perspective of equity market performance. Journal of International Financial Markets, Institutions and Money, 26, 333–357.

    Article  Google Scholar 

  • Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28, 1–38.

    Article  Google Scholar 

  • Jin, H., Markowitz, H. M., & Zhou, X. Y. (2006). A note on semi variance. Mathematical Finance, 16, 53–61.

    Article  Google Scholar 

  • Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. The Journal of Risk, 4, 11–27.

    Google Scholar 

  • Lim, S., Oh, K. W., & Zhu, J. (2014). Use of DEA cross-eficiency evaluation in portfolio selection: An application to Korean stock market. European Journal of Operational Research, 236, 361–368.

    Article  Google Scholar 

  • Mansini, R., Ogryczak, W., & Grazia-Speranza, M. (2014). Twenty years of linear programming based portfolio optimization. European Journal of Operations Research, 234, 518–535.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: Efficient diversification of investment. New York, London, Sydney: Wiley.

    Google Scholar 

  • Nawrocki, D. (1999). A brief history of downside risk measures. Journal of Investing, 8, 9–25.

    Article  Google Scholar 

  • Pätäri, E., Leivo, T., & Honkapuro, S. (2012). Enhancement of equity portfolio performance using data envelopment analysis. European Journal of Operational Research, 220, 786–797.

    Article  Google Scholar 

  • Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. In R. H. Silkman (Ed.), Measuring efficiency: An assessment of data envelopment analysis (pp. 73–105). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Tütüncü, R. H. (2003). Optimization in finance, Advance Lecture on Mathematical Science and Information Science.

    Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Spanish Ministry for Economy and Competitiveness (Ministerio de Economa, Industria y Competitividad), the State Research Agency (Agencia Estatal de Investigacin) and the European Regional Development Fund (Fondo Europeo de Desarrollo Regional) under grant MTM2016-79765-P (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Monge .

Editor information

Editors and Affiliations

15.6 Appendix

15.6 Appendix

Proof of Proposition 2. The efficient portfolio \(i=(\sigma ^*_{MSR_i}, r^*_{MSR_i})\)   that maximizes the cross-efficiency  \(CE_i\),  in the interval  \([r_{1},r_{2}]\),  is reached when

$$\begin{aligned} r_i^* = r_{GMV}^*+\sigma _{GMV}^* \frac{ \displaystyle \frac{ \displaystyle r^*_{MSR_{2}} - r_{2}}{\sigma ^*_{MSR_{2}}} - \frac{r^*_{MSR_{1}} - r_{1}}{\sigma ^*_{MSR_{1}}} }{ \ln \left( \displaystyle \frac{ \displaystyle \frac{ \displaystyle r^*_{MSR_{2}} - r_{2}}{ \displaystyle \sigma ^*_{MSR_{2}}} - \frac{ r^*_{GMV} - r_{2}}{\sigma ^*_{GMV} }}{ \displaystyle \frac{ \displaystyle r^*_{MSR_{1}} - r_{1}}{\sigma ^*_{MSR_{1}}} -\frac{ \displaystyle r^*_{GMV} - r_{{1}}}{\sigma ^*_{GMV} } } \right) }. \end{aligned}$$

The cross-efficiency of portfolio i, \(CE_i\), depends of the risk-free rate, \(r_i\), associated with the portfolio i. We can considered \(CE_i\) as a function of \(r_i\), for \(r_i\in [r_{\min },r_{\max }]\). We can write \(CE_i(r_i)\) as follows

$$ CE_i(r_i)=\displaystyle \frac{\displaystyle r^*_{MSR_i}}{\sigma ^*_{MSR_i}} \int _{r_{\min }}^{r_{\max }}\frac{ \displaystyle \sigma ^*_{MSR}}{r^*_{MSR}-r_f} \, \text {d}r_{f} - \frac{1}{\displaystyle \sigma ^*_{MSR_i}} \int _{r_{\min }}^{r_{\max }}\frac{ \displaystyle \sigma ^*_{MSR} \, \, r_f}{ \displaystyle r^*_{MSR}-r} \, \text {d}r_{f}. $$

From expressions (15.4), (15.9) and (15.10), using notation of (15.5), we can derivate the following identities for the expected return and variance of GMV and MSR portfolios:

$$\begin{aligned}&r_{GMV}^*=\frac{c}{b}, \quad \sigma _{GMV}^*=\frac{1}{\sqrt{b}},\quad \frac{r_{GMV}^*-r_f}{\sigma ^{*2}_{GMV}}=c-b\,\, r_f, \quad \frac{r_{MSR}^*}{\sigma _{MSR}^*}= \frac{a-c \,\, r_f}{\sqrt{a-2c \,\, r_f+b \,\, r_f^2 }}, \nonumber \\&\frac{1}{\sigma _{MSR}^*}= \frac{c-b\,\, r_f}{\sqrt{a-2c\,\, r_f+b\,\, r_f^2 }}, \quad \text {and} \quad \frac{\sigma _{MSR}^*}{r_{MSR}^*-r_f}= \frac{1}{\sqrt{a-2c\,\, r_f+b\,\, r_f^2 }}, \end{aligned}$$
(15.27)

and write the cross-efficiency, \(CE_i(r_i)\), in terms of variable \(r_i\).

$$ CE_i(r_i) = \; \displaystyle \frac{\displaystyle a-c\,\, r_i}{\sqrt{a-2c\,\, r_i+b\,\, r_i^2}} I_1 - \frac{c-b\,\, r_i}{\sqrt{a-2c\,\, r_i+b \,\, r_i^2}} I_2$$

where

$$ I_1=\frac{1}{r_{\max }-r_{\min }}\int _{r_{\min }}^{r_{\max }}\frac{ \displaystyle \text {d}r_{f} }{\sqrt{a-2c \,\, r_f+b \,\, r_f^2}} \quad \text {and} \quad I_2=\frac{1}{r_{\max }-r_{\min }} \int _{r_{\min }}^{r_{\max }}\frac{r_f\,\, \, \text {d}r_{f} }{\sqrt{a-2c\,\, r_f+b \,\, r_f^2}}. $$

The function \(CE_i(R_i)\) has first derivate

$$\begin{aligned} CE'_i(r_i)=&\frac{-c \sqrt{a-2cr_i+br_i^2} -(a-cr_i)(br-c)/\sqrt{a-2cr_i+br_i^2}}{\left( \sqrt{a-2cr_i+br_i^2}\right) ^2}I_1- \\&-\frac{-b\sqrt{a-2cr_i+br_i^2}-(c-br_i)(br_i-c)/\sqrt{a-2cr_i+br_i^2}}{\left( \sqrt{a-2cr_i+br_i^2}\right) ^2}I_2 \\ =&\frac{(c^2r_i-abr_i)I_1+(ba-c^2)I_2}{\left( \sqrt{a-2cr_i+br_i^2}\right) ^3}. \end{aligned}$$

It is left to show that \(CE'_i(r_i)=0\) for \(r_i=I_2/I_1\), therefore, \(r_i=I_2/I_1\) is a point with slope zero, and it is a candidate to a maximum in the interval \([r_{\min },r_{\max }]\). The second derivate of the function \(CE_i(r_i)\) is given by the following expression

$$\begin{aligned} CE''_i(r_i)=&\frac{(c^2-ab)I_1\left( \sqrt{a-2cr_i+br_i^2}\right) ^3}{\left( \sqrt{a-2cr_i+br_i^2}\right) ^6} - \frac{3\left( (ba-c^2)I_2+(c^2-ab)I_1r_i \right) (br_i-c)}{\left( \sqrt{a-2cr_i+br_i^2}\right) ^5} \end{aligned}$$
(15.28)

and the second term of (15.28) is zero at \(r_i=I_2/I_1\), and

$$ CE''(I_2/I_1)= \frac{(c^2-ab)I_1}{(a-2c \, I_2/I_1+b \, I_2^2/I_1^2)}. $$

Since \(\Sigma ^{-1}\) is positive-definite matrix, then \((\mu -r)^T\Sigma ^{-1}(\mu -r)= a-2c r +b r^2 > 0\), with discriminant \(4(c^2-ab) < 0\), then the second derivate at \(r_i=I_2/I_1\), \(CE''(I_2/I_1)\), is less to 0.

Next, we show the expression of \(I_2/I_1\).

$$\begin{aligned} (r_{\max }-r_{\min }) I_1&=\int _{r_{\min }}^{r_{\max }}\frac{ \displaystyle \text {d}r_{f} }{\sqrt{a-2cr_f+br_f^2}} =\left[ \frac{1}{\sqrt{b}} \ln \left( \sqrt{b} \sqrt{a-2cr_f+br_f^2} + b r_f -c \right) \right] _{r_{\min }}^{r_{\max }} \\ (r_{\max }-r_{\min }) I_2&= \int _{r_{\min }}^{r_{\max }}\frac{r_f\, \text {d}r_{f} }{\sqrt{a-2cr_f+br_f^2}}=\nonumber \\&= \left[ \frac{c}{\sqrt{b}^3} \ln \left( \sqrt{b} \sqrt{a-2cr_f+br_f^2} + b r_f -c \right) + \frac{1}{b}\sqrt{a-2cr_f+br_f^2} \right] _{r_{\min }}^{r_{\max }}. \end{aligned}$$

Now, we can write the above expression using the identities of (15.27) as follows:

$$\begin{aligned} (r_{\max }-r_{\min }) I_1&= \sigma _{GMV}^* \ln \left( \displaystyle \frac{ \displaystyle \frac{ \displaystyle r^*_{MSR_{2}} - r_{2}}{ \displaystyle \sigma ^*_{MSR_{2}}} - \frac{ r^*_{GMV} - r_{2}}{\sigma ^*_{GMV} }}{ \displaystyle \frac{ \displaystyle r^*_{MSR_{1}} - r_{1}}{\sigma ^*_{MSR_{1}}} -\frac{ \displaystyle r^*_{GMV} - r_{{1}}}{\sigma ^*_{GMV} } } \right) \\ (r_{\max }-r_{\min }) I_2&= r_{GMV}^* \sigma _{GMV}^* \ln \left( \displaystyle \frac{ \displaystyle \frac{ \displaystyle r^*_{MSR_{2}} - r_{2}}{ \displaystyle \sigma ^*_{MSR_{2}}} - \frac{ r^*_{GMV} - r_{2}}{\sigma ^*_{GMV} }}{ \displaystyle \frac{ \displaystyle r^*_{MSR_{1}} - r_{1}}{\sigma ^*_{MSR_{1}}} -\frac{ \displaystyle r^*_{GMV} - r_{{1}}}{\sigma ^*_{GMV} } } \right) + \\&+ \sigma _{GMV}^{*2} \left( \frac{r_{MSR_{2}}^*-r_{2}}{\sigma ^*_{{MSR}_2}} - \frac{r_{MSR_{1}}^*-r_{1}}{\sigma ^*_{{MSR}_1}} \right) \end{aligned}$$

and, finally we can write the maximum \(r_i\) as

$$\begin{aligned} r_i^* = r_{GMV}^*+\sigma _{GMV}^* \frac{ \displaystyle \frac{ \displaystyle r^*_{MSR_{2}} - r_{2}}{\sigma ^*_{MSR_{2}}} - \frac{r^*_{MSR_{1}} - r_{1}}{\sigma ^*_{MSR_{1}}} }{ \ln \left( \displaystyle \frac{ \displaystyle \frac{ \displaystyle r^*_{MSR_{2}} - r_{2}}{ \displaystyle \sigma ^*_{MSR_{2}}} - \frac{ r^*_{GMV} - r_{2}}{\sigma ^*_{GMV} }}{ \displaystyle \frac{ \displaystyle r^*_{MSR_{1}} - r_{1}}{\sigma ^*_{MSR_{1}}} -\frac{ \displaystyle r^*_{GMV} - r_{{1}}}{\sigma ^*_{GMV} } } \right) }. \end{aligned}$$
(15.29)

   \(\square \)

Proof of Proposition 3. There exists a Pythagorean relationship between the slopes of the Tangent and Global Minimum portfolios and the slope of the asymptote of \(W_{\rho }\).

$$\begin{aligned} m_{TP}^2= m_{ah}^2+m_{GMV}^2. \end{aligned}$$
(15.30)

From expressions (15.5), we can derivate the following identities for the \(m_{TP}\), \(m_{ah}\) and \(m_{GMV}\) slopes:

$$\begin{aligned}&m_{TP}=\sqrt{a}, \qquad m_{ah}= \sqrt{\frac{ab-c^2}{b}} \quad \text {and} \quad m_{GMV}=\frac{c}{\sqrt{b}}. \end{aligned}$$
(15.31)

and now, we can derivate the relationship \(m_{TP}^2= m_{ah}^2+m_{GMV}^2\),

$$\begin{aligned} m_{ah}^2+m_{GMV}^2= \frac{ab-c^2}{b} + \frac{c^2}{b} = a= m_{TP}^2 \end{aligned}$$

   \(\square \)

Proof of Corollary 2. The maximum cross-efficiency (MCESR) portfolio in  \([0,r_{GMV}^*]\)  depends only of Minimal Global Variance and Tangent portfolios.

$$\begin{aligned} r_i^* = r^*_{GMV}\left( 1- \frac{\displaystyle \sqrt{\frac{r^*_{TP}}{r^*_{GMV} }}- \sqrt{\frac{r^*_{TP}}{r^*_{GMV} }-1} }{ \ln \left( \displaystyle \sqrt{\frac{r^*_{TP}}{r^*_{GMV} } -1} \right) - \ln \left( \displaystyle \sqrt{\frac{r^*_{TP}}{r^*_{GMV} }} -1 \right) } \right) . \end{aligned}$$
(15.32)

From (15.27) and (15.31), we can derivate the following expressions:

$$\begin{aligned}&\frac{m_{TP}^2}{m_{GMV}^2}=\frac{a}{c^2/\sqrt{b}^2}= \frac{a/c}{c/b}= \frac{r^*_{TP}}{r^*_{GMV}}, \, \text {then} \quad \frac{m_{TP}}{m_{GMV}}=\sqrt{\frac{r^*_{TP}}{r^*_{GMV}}} \\&\frac{m_{ah}^2}{m_{GMV}^2}= \frac{ \frac{ab-c^2}{b}}{c^2/b} = \frac{ab-c^2}{c^2}=\frac{ab}{c^2}-1= \frac{r^*_{TP}}{r^*_{GMV}} -1, \, \text {then} \quad \frac{m_{ah}}{m_{GMV}}=\sqrt{\frac{r^*_{TP}}{r^*_{GMV}}-1} \\&\frac{m_{TP}^2}{m_{ah}^2}=\frac{a}{\frac{ab-c^2}{b}}=\frac{a/c}{a/c-c/b} =\frac{r^*_{TP}}{r^*_{TP}-r^*_{GMV}}, \, \text {then} \quad \frac{m_{TP}}{m_{ah}}= \sqrt{\frac{r^*_{TP}}{r^*_{TP}-r^*_{GMV}}}. \end{aligned}$$

From the expression (15.21), it is left to show that (15.32) is true.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landete, M., Monge, J.F., Ruiz, J.L., Segura, J.V. (2020). Sharpe Portfolio Using a Cross-Efficiency Evaluation. In: Charles, V., Aparicio, J., Zhu, J. (eds) Data Science and Productivity Analytics. International Series in Operations Research & Management Science, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-030-43384-0_15

Download citation

Publish with us

Policies and ethics