Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 278))

Abstract

Let G be a semisimple Lie group and Γ a uniform lattice in G. The Selberg trace formula is an equality arising from computing in two different ways the traces of convolution operators on the Hilbert space L 2( Γ∖G) associated to test functions f ∈ C c(G).

In this paper we present a cohomological interpretation of the trace formula involving the K-theory of the maximal group C -algebras of G and Γ. As an application, we exploit the role of group C -algebras as recipients of “higher indices” of elliptic differential operators and we obtain the index theoretic version of the Selberg trace formula developed by Barbasch and Moscovici from ours.

In memory of Ronald G. Douglas

B. Mesland and M. H. Şengün gratefully acknowledge support from the Max Planck Institute for Mathematics in Bonn, Germany. H. Wang is supported by NSFC-11801178 and Shanghai Rising-Star Program 19QA1403200.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Lafforgue uses the notation 〈H, x〉 for our π (x), where H is the representation space of π.

References

  1. J. Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., 4, 1–263, Amer. Math. Soc., Providence, RI, (2005).

    Google Scholar 

  2. M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Asterisque 32–33, 43–72 (1976).

    MathSciNet  MATH  Google Scholar 

  3. M. F. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Inventions Math. 42 1–62 (1977).

    Article  MathSciNet  Google Scholar 

  4. P. Baum, A. Connes, and N. Higson, Classifying space for proper actions and K-theory of group C -algebras. C -algebras: 1943–1993 (San Antonio, TX, 1993), 240–291, Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  5. D. Barbasch and H. Moscovici, L 2 -index and the Selberg trace formula. Journal of Functional Analysis 53 151–201 (1983).

    Article  MathSciNet  Google Scholar 

  6. U. Bunke, Orbifold index and equivariant K-homology, Math. Ann. 339 175–194 (2007).

    Article  MathSciNet  Google Scholar 

  7. A. Connes and H. Moscovici, L 2 -index theorem for homogeneous spaces of Lie groups. Ann. Math. 115.2 291–330 (1982).

    Article  MathSciNet  Google Scholar 

  8. A. Deitmar, On the index of Dirac operators on arithmetic quotients. Bull. Austral. Math. Soc. 56 489–497 (1997).

    Article  MathSciNet  Google Scholar 

  9. H. Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group actions. Illinois J. Math. 23, 485–496 (1979).

    Article  MathSciNet  Google Scholar 

  10. S. Echterhoff, Bivariant KK-theory and the Baum–Connes conjecture. https://arxiv.org/abs/1703.10912

  11. C. Farsi, K-theoretical index theorems for good orbifolds. Proceedings of the American Mathematical Society, 115.3 769–773 (1992).

    MathSciNet  MATH  Google Scholar 

  12. J. Fox and P. Haskell, K-theory and the spectrum of discrete subgroups of spin(4,  1). Operator algebras and topology (Craiova, 1989) 30–44, Pitman Res. Notes Math. Ser., 270, Longman Sci. Tech., Harlow, 1992.

    Google Scholar 

  13. J.-S. Huang and P. Pandzic, Dirac operators in representation theory. Birkhäuser, Mathematics: Theory & Applications 2006.

    Google Scholar 

  14. T. Kawasaki, The index of elliptic operators over V-manifold. Nagoya Math. J. 84 135–157 (1981).

    Article  MathSciNet  Google Scholar 

  15. J.-P. Labesse, Pseudo-coefficients trés cuspidaux et K-théorie. Math. Ann. 291 607–616 (1991).

    Article  MathSciNet  Google Scholar 

  16. V. Lafforgue, Banach KK-theory and the Baum–Connes conjecture. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 795–812, Higher Ed. Press, Beijing, 2002

    Google Scholar 

  17. E.C Lance, Hilbert C -modules, a toolkit for operator algebraists, Cambridge University Press, 1995.

    Google Scholar 

  18. R.P. Langlands, Dimension of automorphic forms. PSPM vol. 9, 1966, 253–257.

    MathSciNet  MATH  Google Scholar 

  19. B. Mesland and M.H. Şengün, Hecke operators in KK-theory and the K-homology of Bianchi groups. Journal of Noncommutative Geometry 14.1 125–189 (2020).

    Article  MathSciNet  Google Scholar 

  20. B. Mesland and M.H. Şengün, Hecke modules for arithmetic groups via bivariant K-theory Annals of K-theory 4 631–656 (2018)

    Article  MathSciNet  Google Scholar 

  21. H. Moscovici, L 2 -index elliptic operators on locally symmetric spaces of finite volume. Contemporary Mathematics, 10 129–137 (1982).

    Article  MathSciNet  Google Scholar 

  22. F. Pierrot, K-théorie et multiplicités dans L 2(G∕ Γ). Mém. Soc. Math. Fr. (N.S.) 89 (2002), vi+ 85 pp.

    Google Scholar 

  23. M. Puschnigg, New holomorphically closed subalgebras of C -algebras of hyperbolic groups. Geom. Funct. Anal., 20.1 243–259 (2010).

    Article  MathSciNet  Google Scholar 

  24. M. A. Rieffel, Induced representations of C -algebras. Adv. Math. 13 176–257 (1974).

    Article  Google Scholar 

  25. J. Rosenberg, Group C -algebras and topological invariants. Proc. Conf. on operator algebras and group representations (Neptun, Romania, 1980) Monographs and Studies in Math. 18, London 1984.

    Google Scholar 

  26. S. K. Samurkaş, Bounds for the rank of the finite part of operator K-theory. ArXiv:1705.07378.

    Google Scholar 

  27. N. R. Wallach, On the Selberg trace formula in the case of compact quotient. Bull. Amer. Math. Soc. 82.2 171–195 (1976).

    Article  MathSciNet  Google Scholar 

  28. S. P. Wang, On integrable representations. Math. Z. 147 201–203 (1976).

    Article  MathSciNet  Google Scholar 

  29. B.-L. Wang and H. Wang, Localized index and L 2 -Lefschetz fixed-point formula for orbifolds. J. Differential Geom. 102.2 285–349 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mesland, B., Şengün, M.H., Wang, H. (2020). A K-Theoretic Selberg Trace Formula. In: Curto, R.E., Helton, W., Lin, H., Tang, X., Yang, R., Yu, G. (eds) Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology . Operator Theory: Advances and Applications, vol 278. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-43380-2_19

Download citation

Publish with us

Policies and ethics