Skip to main content

Repetitive Transcranial Magnetic Stimulation in Addiction

  • Chapter
  • First Online:
Book cover Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences

Abstract

Although in the last two decades important advances have been made in understanding the neurobiological underpinnings of addictive disorders (ADs), this knowledge has not yet been translated into effective treatments, especially on the long term. Recent findings report that repetitive transcranial magnetic stimulation (rTMS), including theta burst stimulation (TBS) and deep TMS (dTMS), has emerged as a potential treatment for ADs due to its promising results in terms of craving reduction, and given its ability to induce neuroplasticity and modulate brain activity. Based on this rationale and the current evidence, rTMS can be classified as probably effective in the treatment of addiction, with promising effect size for high-frequency rTMS stimulation protocol of the DLPFC, mainly in nicotine and cocaine/stimulant-use disorders, and with some noteworthy pilot data in the area of gambling disorder. However, double-blind, sham-controlled studies are mostly needed in order to confirm these potential benefits. Interestingly, most of the efforts for rTMS in addiction have been focused on increasing activity in the DLPFC. However, decreasing activity in the MPFC and ventral striatum may also be a feasible and fruitful target to consider. Future research should identify potential parameters (i.e., duration, number of stimulation treatments, stimulation frequency, intensity, brain region of target) of stimulation in rTMS studies for the most effective and safe treatment of drug addiction. The personalization of rTMS treatments, as well as the optimization of stimulation protocols, is the main issue that will involve future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73. https://doi.org/10.1016/S2215-0366(16)00104-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38. https://doi.org/10.1038/npp.2009.110.

    Article  PubMed  Google Scholar 

  3. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8:1445–9. https://doi.org/10.1038/nn1578.

    Article  CAS  PubMed  Google Scholar 

  4. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18:247–91.

    Article  CAS  PubMed  Google Scholar 

  5. Nestler EJ. Molecular neurobiology of addiction. Am J Addict. 2001;10(3):201–17.

    Google Scholar 

  6. Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP, Steinacher B, Kathmann N, Geurts DE, Sommer C, Müller DK, Nebe S, Paul S, Wittchen HU, Zimmermann US, Walter H, Smolka MN, Sterzer P, Rapp MA, Huys QJ, Schlagenhauf F, Heinz A. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol. 2016;21(3):719–31. https://doi.org/10.1111/adb.12243

  7. Kourrich S, Calu DJ, Bonci A. Intrinsic plasticity: an emerging player in addiction. Nat Rev Neurosci. 2015;16(3):173–84.

    Google Scholar 

  8. Di Ciano P, Everitt BJ. Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur J Neurosci. 2004;19(6):1661–7.

    Google Scholar 

  9. Kiyatkin EA, Stein EA. Conditioned changes in nucleus accumbens dopamine signal established by intravenous cocaine in rats. Neurosci Lett. 1996;211(2):73–6.

    Google Scholar 

  10. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature. 2003;422(6932):614-8. Erratum in: Nature. 2003;423(6938):461.

    Google Scholar 

  11. Vanderschuren LJ, Di Ciano P, Everitt BJ. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci. 2005;25(38):8665–70.

    Google Scholar 

  12. Weiss F, Maldonado-Vlaar CS, Parsons LH, Kerr TM, Smith DL, Ben-Shahar O. Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci U S A. 2000;97(8):4321–6.

    Google Scholar 

  13. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.

    Article  CAS  PubMed  Google Scholar 

  14. Belin D, Belin-Rauscent A, Murray JE, Everitt BJ. Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol. 2013;23(4):564-72. https://doi.org/10.1016/j.conb.2013.01.025.

  15. Volkow ND, Koob G, Baler R. Biomarkers in substance use disorders. ACS Chem Nerosci. 2015;6:522–5. https://doi.org/10.1021/acschemneuro.5b00067.

    Article  CAS  Google Scholar 

  16. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McClure SM, Bickel WK. A dual-systems perspective on addiction: contributions from neuroimaging and cognitive training. Ann N Y Acad Sci. 2014;1327:62–78. https://doi.org/10.1111/nyas.12561.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hayashi T, Ko JH, Strafella AP, Dagher A. Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proc Natl Acad Sci U S A. 2013;110:4422–7. https://doi.org/10.1073/pnas.1212185110.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dunlop K, Hanlon CA, Downar J. Noninvasive brain stimulation treatments for addiction and major depression. Ann N Y Acad Sci. 2017;1394:31–54. https://doi.org/10.1111/nyas.12985.

    Article  PubMed  Google Scholar 

  20. Eldreth DA, Matochik JA, Cadet JL, Bolla KI. Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. Neuroimage. 2004;23:914–20. https://doi.org/10.1016/j.neuroimage.2004.07.032.

    Article  PubMed  Google Scholar 

  21. Salo R, Ursu S, Buonocore MH, Leamon MH, Carter C. Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol Psychiatry. 2009;65:706–9. https://doi.org/10.1016/j.biopsych.2008.11.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koob GF, Le Moal M, Se V. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3113–23. https://doi.org/10.1098/rstb.2008.0094.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kwako LE, Momenan R, Litten RZ, Koob GF, Goldman D. Addictions Neuroclinical Assessment: A Neuroscience-Based Framework for Addictive Disorders. Biol Psychiatry. 2016;80(3):179–89. https://doi.org/10.1016/j.biopsych.2015.10.024.

  24. Spagnolo PA, Gómez Pérez LJ, Terraneo A, Gallimberti L, Bonci A. Neural correlates of cue- and stress-induced craving in gambling disorders: implications for transcranial magnetic stimulation interventions. Eur J Neurosci. 2019;50(3):2370–2383. https://doi.org/10.1111/ejn.14313.

  25. Yücel M, Oldenhof E, Ahmed SH, Belin D, Billieux J, Bowden-Jones H, Carter A, Chamberlain SR, Clark L, Connor J, Daglish M, Dom G, Dannon P, Duka T, Fernandez-Serrano MJ, Field M, Franken I, Goldstein RZ, Gonzalez R, Goudriaan AE, Grant JE, Gullo MJ, Hester R, Hodgins DC, Le Foll B, Lee RSC, Lingford- Hughes A, Lorenzetti V, Moeller SJ, Munafò MR, Odlaug B, Potenza MN, Segrave R, Sjoerds Z, Solowij N, van den Brink W, van Holst RJ, Voon V, Wiers R, Fontenelle LF, Verdejo-Garcia A. A transdiagnostic dimensional approach towards a neuropsychological assessment for addiction: an international Delphi consensus study. Addiction. 2019;114(6):1095–1109. https://doi.org/10.1111/add.14424.

  26. Achab S, Khazaal Y. Psychopharmacological treatment in pathological gambling: a critical review. Curr Pharm Des. 2011;17:1389–95. https://doi.org/10.2174/138161211796150774.

    Article  CAS  PubMed  Google Scholar 

  27. Bolt DM, Piper ME, Theobald WE, Baker TB. Why two smoking cessation agents work better than one: role of craving suppression. J Consult Clin Psychol. 2012;80:54–65. https://doi.org/10.1037/a0026366.

    Article  PubMed  Google Scholar 

  28. Mariani JJ, Levin FR. Psychostimulant treatment of cocaine dependence. Psychiatr Clin North Am. 2012;35:425–39. https://doi.org/10.1016/j.psc.2012.03.012.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Muller CA, Schafer M, Banas R, Heimann HM, Volkmar K, Forg A, Heinz A, Hein J. A combination of levetiracetam and tiapride for outpatient alcohol detoxification: a case series. J Addict Med. 2011;5:153–6. https://doi.org/10.1097/ADM.0b013e3181ec5f81.

    Article  PubMed  Google Scholar 

  30. McHugh RK, Hearon BA, Otto MW. Cognitive-behavioral therapy for substance use disorders. Psychiatr Clin North Am. 2010;33:511–25.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, Glover GH, Deisseroth K, Etkin A. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci U S A. 2013;110(49):19944–9. https://doi.org/10.1073/pnas.1311772110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jasinska AJ, Chen BT, Bonci A, Stein EA. Dorsal medial prefrontal cortex (MPFC) circuitry in rodent models of cocaine use: implications for drug addiction therapies. Addict Biol. 2015;20:215–26. https://doi.org/10.1111/adb.12132.

    Article  PubMed  Google Scholar 

  33. Balleine BW, Dickinson A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology. 1998;37:407–19. https://doi.org/10.1016/s0028-3908(98)00033-1.

    Article  CAS  PubMed  Google Scholar 

  34. Gass JT, Chandler LJ. The plasticity of extinction: contribution of the prefrontal cortex in treating addiction through inhibitory learning. Front Psych. 2013;4:46. https://doi.org/10.3389/fpsyt.2013.00046.

    Article  CAS  Google Scholar 

  35. Papaleo F, Erickson L, Liu G, Chen J, Weinberger DR. Effects of sex and COMT genotype on environmentally modulated cognitive control in mice. Proc Natl Acad Sci U S A. 2012;109:20160–5. https://doi.org/10.1073/pnas.1214397109.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rorie AE, Newsome WT. A general mechanism for decision-making in the human brain? Trends Cogn Sci. 2005;9:41–3. https://doi.org/10.1016/j.tics.2004.12.007.

    Article  PubMed  Google Scholar 

  37. Knoch D, Gianotti LRR, Pascual-Leone A, Treyer V, Regard M, Hohmann M, Brugger P. Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci. 2006;26:6469–72. https://doi.org/10.1523/JNEUROSCI.0804-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26. https://doi.org/10.1038/npp.2009.129.

    Article  PubMed  Google Scholar 

  39. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47. https://doi.org/10.1146/annurev-neuro-071013-014030.

    Article  CAS  PubMed  Google Scholar 

  41. Spronk DB, van Wel JHP, Ramaekers JG, Verkes RJ. Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci Biobehav Rev. 2013;37:1838–59. https://doi.org/10.1016/j.neubiorev.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  42. Bechara A, Damasio H, Tranel D, Damasio AR. The Iowa gambling task and the somatic marker hypothesis: some questions and answers. Trends Cogn Sci. 2005;9:154–9. https://doi.org/10.1016/j.tics.2005.02.002.

    Article  Google Scholar 

  43. Bickel WK, Miller ML, Yi R, Kowal BP, Lindquist DM, Pitcock JA. Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depend. 2007;90(Suppl 1):S85–91. https://doi.org/10.1016/j.drugalcdep.2006.09.016.

    Article  PubMed  Google Scholar 

  44. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP. Limbic activation during cue-induced cocaine craving. Am J Psychiatry. 1999;156:11–8. https://doi.org/10.1176/ajp.156.1.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu Y, Salmeron BJ, Gu H, Stein EA, Yang Y. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiat. 2015;72:584–92. https://doi.org/10.1001/jamapsychiatry.2015.1.

    Article  Google Scholar 

  46. Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016;374:363–71. https://doi.org/10.1056/NEJMra1511480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hanlon CA, Dowdle LT, Henderson JS. Modulating neural circuits with transcranial magnetic stimulation: implications for addiction treatment development. Pharmacol Rev. 2018;70:661–83. https://doi.org/10.1124/pr.116.013649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 2001;21:RC157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cho SS, Strafella AP. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One. 2009;4:e6725. https://doi.org/10.1371/journal.pone.0006725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Addolorato G, Antonelli M, Cocciolillo F, Vassallo GA, Tarli C, Sestito L, Mirijello A, Ferrulli A, Pizzuto DA, Camardese G, Miceli A, Diana M, Giordano A, Gasbarrini A, Di Giuda D. Deep transcranial magnetic stimulation of the dorsolateral prefrontal cortex in alcohol use disorder patients: effects on dopamine transporter availability and alcohol intake. Eur Neuropsychopharmacol. 2017;27:450–61. https://doi.org/10.1016/j.euroneuro.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  51. Vanderschuren LJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 2000;151:99–120. https://doi.org/10.1007/s002130000493.

    Article  CAS  Google Scholar 

  52. Kalivas PW, O’Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology. 2008;33:166–80. https://doi.org/10.1038/sj.npp.1301564.

    Article  CAS  PubMed  Google Scholar 

  53. Diana M. The dopamine hypothesis of drug addiction and its potential therapeutic value. Front Psych. 2011;2:64. https://doi.org/10.3389/fpsyt.2011.00064.

    Article  CAS  Google Scholar 

  54. Gersner R, Kravetz E, Feil J, Pell G, Zangen A. Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci. 2011;31:7521–6. https://doi.org/10.1523/JNEUROSCI.6751-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, Tedeschi G, Funke K, Di Lazzaro V. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10:1–18. https://doi.org/10.1016/j.brs.2016.11.009.

    Article  CAS  PubMed  Google Scholar 

  56. Diana M, Raij T, Melis M, Nummenmaa A, Leggio L, Bonci A. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nat Rev Neurosci. 2017;18:685–93. https://doi.org/10.1038/nrn.2017.113.

    Article  CAS  PubMed  Google Scholar 

  57. Argilli E, Sibley DR, Malenka RC, England PM, Bonci A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J Neurosci. 2008;28:9092–100. https://doi.org/10.1523/JNEUROSCI.1001-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McDonnell MN, Orekhov Y, Ziemann U. The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res. 2006;173(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  59. Daskalakis ZJ, Moller B, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp Brain Res. 2006;174:403–12. https://doi.org/10.1007/s00221-006-0472-0.

    Article  PubMed  Google Scholar 

  60. Di Nicola M, Martinotti G, Tedeschi D, Frustaci A, Mazza M, Sarchiapone M, Pozzi G, Bria P, Janiri L. Pregabalin in outpatient detoxification of subjects with mild-to-moderate alcohol withdrawal syndrome. Hum Psychopharmacol. 2010;25:268–75. https://doi.org/10.1002/hup.1098.

    Article  CAS  PubMed  Google Scholar 

  61. Martinotti G, Di Nicola M, Romanelli R, Andreoli S, Pozzi G, Moroni N, Janiri L. High and low dosage oxcarbazepine versus naltrexone for the prevention of relapse in alcohol-dependent patients. Hum Psychopharmacol. 2007;22:149–56. https://doi.org/10.1002/hup.833.

    Article  CAS  PubMed  Google Scholar 

  62. Martinotti G, Di Nicola M, Tedeschi D, Mazza M, Janiri L, Bria P. Efficacy and safety of pregabalin in alcohol dependence. Adv Ther. 2008;25(6):608–18.

    Article  CAS  PubMed  Google Scholar 

  63. Spagnolo PA, Goldman D. Neuromodulation interventions for addictive disorders: challenges, promise, and roadmap for future research. Brain. 2017;140:1183–203. https://doi.org/10.1093/brain/aww284.

    Article  PubMed  Google Scholar 

  64. Zhang X, Mei Y, Liu C, Yu S. Effect of transcranial magnetic stimulation on the expression of c-Fos and brain-derived neurotrophic factor of the cerebral cortex in rats with cerebral infarct. J Huazhong Univ Sci Technolog Med Sci. 2007;27:415–8. https://doi.org/10.1007/s11596-007-0416-3.

    Article  CAS  PubMed  Google Scholar 

  65. Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L. Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav Rev. 2010;35:157–71. https://doi.org/10.1016/j.neubiorev.2009.11.009.

    Article  CAS  PubMed  Google Scholar 

  66. Ricci V, Martinotti G, Gelfo F, Tonioni F, Caltagirone C, Bria P, Angelucci F. Chronic ketamine use increases serum levels of brain-derived neurotrophic factor. Psychopharmacology (Berl). 2011;215(1):143–8.

    Article  CAS  Google Scholar 

  67. Zhang JJQ, Fong KNK, Ouyang R-G, Siu AMH, Kranz GS. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: a systematic review and meta-analysis. Addiction. 2019;114(12):2137–49. https://doi.org/10.1111/add.14753.

    Article  PubMed  Google Scholar 

  68. Bellamoli E, Manganotti P, Schwartz RP, Rimondo C, Gomma M, Serpelloni G. rTMS in the treatment of drug addiction: an update about human studies. Behav Neurol. 2014;2014:815215. https://doi.org/10.1155/2014/815215.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Roth Y, Zangen A, Hallett M. A coil design for transcranial magnetic stimulation of deep brain regions. J Clin Neurophysiol. 2002;19:361–70.

    Article  PubMed  Google Scholar 

  70. Hanlon CA, Dowdle LT, Austelle CW, DeVries W, Mithoefer O, Badran BW, George MS. What goes up, can come down: novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Res. 2015;1628:199–209. https://doi.org/10.1016/j.brainres.2015.02.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hanlon CA, Dowdle LT, Correia B, Mithoefer O, Kearney-Ramos T, Lench D, Griffin M, Anton RF, George MS. Left frontal pole theta burst stimulation decreases orbitofrontal and insula activity in cocaine users and alcohol users. Drug Alcohol Depend. 2017;178:310–7. https://doi.org/10.1016/j.drugalcdep.2017.03.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johann M, Wiegand R, Kharraz A, Bobbe G, Sommer G, Hajak G, Wodarz N, Eichhammer P. Repetitiv transcranial magnetic stimulation in nicotine dependence. Psychiatr Prax. 2003;30:129–31. https://doi.org/10.1055/s-2003-39733.

    Article  PubMed  Google Scholar 

  73. Eichhammer P, Johann M, Kharraz A, Binder H, Pittrow D, Wodarz N, Hajak G. High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. J Clin Psychiatry. 2003;64:951–3. https://doi.org/10.4088/jcp.v64n0815.

    Article  PubMed  Google Scholar 

  74. Barr MS, Fitzgerald PB, Farzan F, George TO, Daskalakis J. Transcranial magnetic stimulation to understand the pathophysiology and treatment of substance use disorders. Curr Drug Abuse Rev. 2008;1(3):328–39.

    Article  CAS  PubMed  Google Scholar 

  75. Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction. 2009;104:653–60. https://doi.org/10.1111/j.1360-0443.2008.02448.x.

    Article  PubMed  Google Scholar 

  76. Wing VC, Bacher I, Wu BS, Daskalakis ZJ, George TP. High frequency repetitive transcranial magnetic stimulation reduces tobacco craving in schizophrenia. Schizophr Res. 2012;139(1-3):264–6. https://doi.org/10.1016/j.schres.2012.03.006.

    Article  PubMed  Google Scholar 

  77. Rose JE, McClernon FJ, Froeliger B, Behm FM, Preud’homme X, Krystal AD. Repetitive transcranial magnetic stimulation of the superior frontal gyrus modulates craving for cigarettes. Biol Psychiatry. 2011;70:794–9. https://doi.org/10.1016/j.biopsych.2011.05.031.

    Article  PubMed  Google Scholar 

  78. Dinur-Klein L, Dannon P, Hadar A, Rosenberg O, Roth Y, Kotler M, Zangen A. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol Psychiatry. 2014;76:742–9. https://doi.org/10.1016/j.biopsych.2014.05.020.

    Article  PubMed  Google Scholar 

  79. Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci. 2014;1316:53-70. https://doi.org/10.1111/nyas.12415.

  80. Brainin M, Barnes M, Baron J-C, Gilhus NE, Hughes R, Selmaj K, Waldemar G. Guidance for the preparation of neurological management guidelines by EFNS scientific task forces—revised recommendations 2004. Eur J Neurol. 2004;11:577–81. https://doi.org/10.1111/j.1468-1331.2004.00867.x.

    Article  CAS  PubMed  Google Scholar 

  81. Soyka M, Müller CA. Pharmacotherapy of alcoholism—an update on approved and off-label medications. Expert Opin Pharmacother. 2017;18(12):1187–99.

    Article  CAS  PubMed  Google Scholar 

  82. Mishra BR, Nizamie SH, Das B, Praharaj SK. Efficacy of repetitive transcranial magnetic stimulation in alcohol dependence: a sham-controlled study. Addiction. 2010;105:49–55. https://doi.org/10.1111/j.1360-0443.2009.02777.x.

    Article  PubMed  Google Scholar 

  83. Hoppner J, Broese T, Wendler L, Berger C, Thome J. Repetitive transcranial magnetic stimulation (rTMS) for treatment of alcohol dependence. World J Biol Psychiatry. 2011;12(Suppl 1):57–62. https://doi.org/10.3109/15622975.2011.598383.

    Article  PubMed  Google Scholar 

  84. Herremans SC, Baeken C, Vanderbruggen N, Vanderhasselt MA, Zeeuws D, Santermans L, De Raedt R. No influence of one right-sided prefrontal HF-rTMS session on alcohol craving in recently detoxified alcohol-dependent patients: results of a naturalistic study. Drug Alcohol Depend. 2012;120:209–13. https://doi.org/10.1016/j.drugalcdep.2011.07.021.

    Article  CAS  PubMed  Google Scholar 

  85. De Ridder D, Vanneste S, Kovacs S, Sunaert S, Dom G. Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study. Neurosci Lett. 2011;496:5–10. https://doi.org/10.1016/j.neulet.2011.03.074.

    Article  CAS  PubMed  Google Scholar 

  86. Herremans SC, Baeken C. The current perspective of neuromodulation techniques in the treatment of alcohol addiction: a systematic review. Psychiatr Danub. 2012;24(Suppl 1):S14–20.

    PubMed  Google Scholar 

  87. Reitox National Drug Information Centre-Italy—EMCDDA. National Report to EMCDDA 2013—Italy. 2014.

    Google Scholar 

  88. Sinha R. New findings on biological factors predicting addiction relapse vulnerability. Curr Psychiatry Rep. 2011;13(5):398–405. https://doi.org/10.1007/s11920-011-0224-0.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Volkow ND, Fowler JS, Wang G-J, Swanson JM. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry. 2004;9:557–69. https://doi.org/10.1038/sj.mp.4001507.

    Article  CAS  PubMed  Google Scholar 

  90. Matochik JA, London ED, Eldreth DA, Cadet J-L, Bolla KI. Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage. 2003;19:1095–102.

    Article  PubMed  Google Scholar 

  91. Moreno-López L, Stamatakis EA, Fernández-Serrano MJ, Gómez-Río M, Rodríguez-Fernández A, Pérez-García M, Verdejo-García A. Neural correlates of the severity of cocaine, heroin, alcohol, MDMA and cannabis use in polysubstance abusers: a resting-PET brain metabolism study. PLoS One. 2012;7:e39830. https://doi.org/10.1371/journal.pone.0039830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52. https://doi.org/10.1176/appi.ajp.159.10.1642.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kaufman JN, Ross TJ, Stein EA, Garavan H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci. 2003;23:7839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ke Y, Streeter CC, Nassar LE, Sarid-Segal O, Hennen J, Yurgelun-Todd DA, Awad LA, Rendall MJ, Gruber SA, Nason A, Mudrick MJ, Blank SR, Meyer AA, Knapp C, Ciraulo DA, Renshaw PF. Frontal lobe GABA levels in cocaine dependence: a two-dimensional, J-resolved magnetic resonance spectroscopy study. Psychiatry Res. 2004;130:283–93. https://doi.org/10.1016/j.pscychresns.2003.12.001.

    Article  CAS  PubMed  Google Scholar 

  95. Licata SC, Renshaw PF. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci. 2010;1187:148–71. https://doi.org/10.1111/j.1749-6632.2009.05143.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Volkow ND, Fowler JS, Wang G-J. The addicted human brain: insights from imaging studies. J Clin Invest. 2003;111:1444–51. https://doi.org/10.1172/JCI18533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Camprodon JA, Martínez-Raga J, Alonso-Alonso M, Shih M-C, Pascual-Leone A. One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving. Drug Alcohol Depend. 2007;86:91–4. https://doi.org/10.1016/j.drugalcdep.2006.06.002.

    Article  PubMed  Google Scholar 

  98. Politi E, Fauci E, Santoro A, Smeraldi E. Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving. Am J Addict. 2008;17(4):345–6. https://doi.org/10.1080/10550490802139283.

    Article  PubMed  Google Scholar 

  99. Martinez D, Urban N, Grassetti A, Chang D, Hu MC, Zangen A, Levin FR, Foltin R, Nunes EV. Transcranial magnetic stimulation of medial prefrontal and cingulate cortices reduces cocaine self-administration: a pilot study. Front Psych. 2018;9:10–5. https://doi.org/10.3389/fpsyt.2018.00080.

    Article  Google Scholar 

  100. Pettorruso M, Spagnolo PA, Leggio L, Janiri L, Di Giannantonio M, Gallimberti L, Bonci A, Martinotti G. Repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex may improve symptoms of anhedonia in individuals with cocaine use disorder: a pilot study. Brain Stimul. 2018;11:1195–7. https://doi.org/10.1016/j.brs.2018.06.001.

    Article  PubMed  Google Scholar 

  101. Rapinesi C, Del Casale A, Di Pietro S, Ferri VR, Piacentino D, Sani G, Raccah RN, Zangen A, Ferracuti S, Vento AE, Angeletti G, Brugnoli R, Kotzalidis GD, Girardi P. Add-on high frequency deep transcranial magnetic stimulation (dTMS) to bilateral prefrontal cortex reduces cocaine craving in patients with cocaine use disorder. Neurosci Lett. 2016;629:43–7. https://doi.org/10.1016/j.neulet.2016.06.049.

    Article  CAS  PubMed  Google Scholar 

  102. Terraneo A, Leggio L, Saladini M, Ermani M, Bonci A, Gallimberti L. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: a pilot study. Eur Neuropsychopharmacol. 2016;26(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  103. Sanna A, Fattore L, Badas P, Corona G, Cocco V, Diana M. Intermittent Theta burst stimulation of the prefrontal cortex in cocaine use disorder: a pilot study. Front Neurosci. 2019;13:765.

    Google Scholar 

  104. Pettorruso M, Martinotti G, Santacroce R, Montemitro C, Fanella F, Di Giannantonio M. rTMS reduces psychopathological burden and cocaine consumption in treatment-seeking subjects with cocaine use disorder: an open label, feasibility study. Front Psych. 2019b;10:1–9. https://doi.org/10.3389/fpsyt.2019.00621.

    Article  Google Scholar 

  105. Corkery JM, Schifano F, Martinotti G. Pharmacology influencing practice, policy and the law. Br J Clin Pharmacol. 2019; https://doi.org/10.1111/bcp.14183.

  106. Schifano F, Leoni M, Martinotti G, Rawaf S, Rovetto F. Importance of cyberspace for the assessment of the drug abuse market: preliminary results from the Psychonaut 2002 project. Cyberpsychol Behav. 2003;6(4):405–10.

    Article  PubMed  Google Scholar 

  107. Courtney KE, Ray LA. Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend. 2014;143:11–21. https://doi.org/10.1016/j.drugalcdep.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  108. Du X, Yu C, Hu Z-Y, Zhou D-S. Commentary: methamphetamine abuse impairs motor cortical plasticity and function. Front Hum Neurosci. 2017;11:562. https://doi.org/10.3389/fnhum.2017.00562.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Liu T, Li Y, Shen Y, Liu X, Yuan T. Progress in Neuropsychopharmacology & Biological Psychiatry Gender does not matter: add-on repetitive transcranial magnetic stimulation treatment for female methamphetamine dependents. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:70–5. https://doi.org/10.1016/j.pnpbp.2018.12.018.

    Article  PubMed  Google Scholar 

  110. Su H, Zhong N, Gan H, Wang J, Han H, Chen T, Li X, Ruan X, Zhu Y, Jiang H, Zhao M. High frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex for methamphetamine use disorders: a randomised clinical trial. Drug Alcohol Depend. 2017;175:84–91. https://doi.org/10.1016/j.drugalcdep.2017.01.037.

    Article  CAS  PubMed  Google Scholar 

  111. Lin J, Liu X, Li H, Yu L, Shen M, Lou Y, Xie S, Chen J, Zhang R, Yuan T-F. Chronic repetitive transcranial magnetic stimulation (rTMS) on sleeping quality and mood status in drug dependent male inpatients during abstinence. Sleep Med. 2019;58:7–12. https://doi.org/10.1016/j.sleep.2019.01.052.

    Article  PubMed  Google Scholar 

  112. Liang Q, Lin J, Yang J, Li X, Chen Y, Meng X, Yuan J. Intervention effect of repetitive TMS on behavioral adjustment after error commission in long-term methamphetamine addicts: evidence from a two-choice oddball task. Neurosci Bull. 2018;34:449–56. https://doi.org/10.1007/s12264-018-0205-y.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li X, Malcolm RJ, Huebner K. Low frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex transiently increases cue-induced craving for methamphetamine: a preliminary study. Drug Alcohol Depend. 2013;133:641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu Q, Shen Y, Cao X, Li Y. Brief report: either at left or right, both high and low frequency rTMS of dorsolateral prefrontal cortex decreases Cue induced craving for methamphetamine. Am J Addict. 2017;26(8):776–9. https://doi.org/10.1111/ajad.12638.

    Article  PubMed  Google Scholar 

  115. Verhamme KMC, Bohnen AM. Are we facing an opioid crisis in Europe? Lancet Public Health. 2019;4(10):e483–4. https://doi.org/10.1016/S2468-2667(19)30156-2.

    Article  PubMed  Google Scholar 

  116. Kuhn J, Moller M, Treppmann JF, Bartsch C, Lenartz D, Gruendler TOJ, Maarouf M, Brosig A, Barnikol UB, Klosterkotter J, Sturm V. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry. 2014;19(2):145–6. https://doi.org/10.1038/mp.2012.196.

    Article  CAS  PubMed  Google Scholar 

  117. Valencia-Alfonso C-E, Luigjes J, Smolders R, Cohen MX, Levar N, Mazaheri A, van den Munckhof P, Schuurman PR, van den Brink W, Denys D. Effective deep brain stimulation in heroin addiction: a case report with complementary intracranial electroencephalogram. Biol Psychiatry. 2012; https://doi.org/10.1016/j.biopsych.2011.12.013.

  118. Zhou H, Xu J, Jiang J. Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry. 2011;69(11):e41–2. https://doi.org/10.1016/j.biopsych.2011.02.012.

    Article  PubMed  Google Scholar 

  119. Kroon E, Kuhns L, Hoch E, Cousijn J. Heavy cannabis use, dependence and the brain: a clinical perspective. Addiction. 2019;115:559–72. https://doi.org/10.1111/add.14776.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sahlem GL, Baker NL, George MS, Malcolm RJ, McRae-Clark AL. Repetitive transcranial magnetic stimulation (rTMS) administration to heavy cannabis users. Am J Drug Alcohol Abuse. 2018;44:47–55. https://doi.org/10.1080/00952990.2017.1355920.

    Article  PubMed  Google Scholar 

  121. Spagnolo PA, Gómez Pérez LJ, Terraneo A, Gallimberti L, Bonci A. Neural correlates of cue- and stress-induced craving in gambling disorders: implications for transcranial magnetic stimulation interventions. Eur J Neurosci. 2019;50(3):2370–83.

    Article  PubMed  Google Scholar 

  122. Goudriaan AE, Yucel M, van Holst RJ. Getting a grip on problem gambling: what can neuroscience tell us? Front Behav Neurosci. 2014;8:141. https://doi.org/10.3389/fnbeh.2014.00141.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Moccia L, Pettorruso M, De Crescenzo F, De Risio L, di Nuzzo L, Martinotti G, Bifone A, Janiri L, Di Nicola M. Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neurosci Biobehav Rev. 2017;78:104–16. https://doi.org/10.1016/j.neubiorev.2017.04.025.

    Article  PubMed  Google Scholar 

  124. van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev. 2010;34:87–107. https://doi.org/10.1016/j.neubiorev.2009.07.007.

    Article  PubMed  Google Scholar 

  125. Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, Castelo-Branco L, Challet-Bouju G, Clark VP, Claus E, Dannon PN, Del Felice A, den Uyl T, Diana M, di Giannantonio M, Fedota JR, Fitzgerald P, Gallimberti L, Grall-Bronnec M, Herremans SC, Herrmann MJ, Jamil A, Khedr E, Kouimtsidis C, Kozak K, Krupitsky E, Lamm C, Lechner WV, Madeo G, Malmir N, Martinotti G, McDonald WM, Montemitro C, Nakamura-Palacios EM, Nasehi M, Noël X, Nosratabadi M, Paulus M, Pettorruso M, Pradhan B, Praharaj SK, Rafferty H, Sahlem G, Salmeron BJ, Sauvaget A, Schluter RS, Sergiou C, Shahbabaie A, Sheffer C, Spagnolo PA, Steele VR, Yuan T, van Dongen JDM, Van Waes V, Venkatasubramanian G, Verdejo-García A, Verveer I, Welsh JW, Wesley MJ, Witkiewitz K, Yavari F, Zarrindast M-R, Zawertailo L, Zhang X, Cha Y-H, George TP, Frohlich F, Goudriaan AE, Fecteau S, Daughters SB, Stein EA, Fregni F, Nitsche MA, Zangen A, Bikson M, Hanlon CA. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev. 2019;104:118–40. https://doi.org/10.1016/j.neubiorev.2019.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zack M, Cho SS, Parlee J, Jacobs M, Li C, Boileau I, Strafella A. Effects of high frequency repeated transcranial magnetic stimulation and continuous theta burst stimulation on gambling reinforcement, delay discounting, and Stroop interference in men with pathological gambling. Brain Stimul. 2016;9:867–75. https://doi.org/10.1016/j.brs.2016.06.003.

    Article  PubMed  Google Scholar 

  127. Gay A, Boutet C, Sigaud T, Kamgoue A, Sevos J, Brunelin J, Massoubre C. A single session of repetitive transcranial magnetic stimulation of the prefrontal cortex reduces cue-induced craving in patients with gambling disorder. Eur Psychiatry. 2017;41:68–74. https://doi.org/10.1016/j.eurpsy.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  128. Sauvaget A, Bulteau S, Guilleux A, Leboucher J, Pichot A, Valriviere P, Vanelle J-M, Sebille-Rivain V, Grall-Bronnec M. Both active and sham low-frequency rTMS single sessions over the right DLPFC decrease cue-induced cravings among pathological gamblers seeking treatment: a randomized, double-blind, sham-controlled crossover trial. J Behav Addict. 2018;7:126–36. https://doi.org/10.1556/2006.7.2018.14.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pettorruso M, Di Giuda D, Martinotti G, Cocciolillo F, De Risio L, Montemitro C, Camardese G, Di Nicola M, Janiri L, di Giannantonio M. Dopaminergic and clinical correlates of high-frequency repetitive transcranial magnetic stimulation in gambling addiction: a SPECT case study. Addict Behav. 2019a;93:246–9. https://doi.org/10.1016/j.addbeh.2019.02.013.

    Article  PubMed  Google Scholar 

  130. Pettorruso M, Martinotti G, Montemitro C, De Risio L, Spagnolo PA, Gallimberti L, Fanella F, Bonci A, Di Giannantonio M; Brainswitch Study Group. Multiple Sessions of High-Frequency Repetitive Transcranial Magnetic Stimulation as a Potential Treatment for Gambling Addiction: A 3-Month, Feasibility Study. Eur Addict Res. 2020;26(1):52-56. https://doi.org/10.1159/000504169.

  131. Cardullo S, Gomez Perez LJ, Marconi L, Terraneo A, Gallimberti L, Bonci A, Madeo G. Clinical improvements in comorbid gambling/cocaine use disorder (GD/CUD) patients undergoing repetitive transcranial magnetic stimulation (rTMS). J Clin Med. 2019;8:768. https://doi.org/10.3390/jcm8060768.

    Article  PubMed Central  Google Scholar 

  132. Rossi S, De Capua A, Tavanti M, Calossi S, Polizzotto NR, Mantovani A, Falzarano V, Bossini L, Passero S, Bartalini S, Ulivelli M. Dysfunctions of cortical excitability in drug-naive posttraumatic stress disorder patients. Biol Psychiatry. 2009;66:54–61. https://doi.org/10.1016/j.biopsych.2009.03.008.

    Article  CAS  PubMed  Google Scholar 

  133. Schulze L, Feffer K, Lozano C, Giacobbe P, Daskalakis ZJ, Blumberger DM, Downar J. Number of pulses or number of sessions? An open-label study of trajectories of improvement for once-vs twice-daily dorsomedial prefrontal rTMS in major depression. Brain Stimul. 2018;11:327–36. https://doi.org/10.1016/j.brs.2017.11.002.

    Article  PubMed  Google Scholar 

  134. Baeken C, Vanderhasselt M-A, Remue J, Herremans S, Vanderbruggen N, Zeeuws D, Santermans L, De Raedt R. Intensive HF-rTMS treatment in refractory medication-resistant unipolar depressed patients. J Affect Disord. 2013;151:625–31. https://doi.org/10.1016/j.jad.2013.07.008.

    Article  PubMed  Google Scholar 

  135. Balconi M, Finocchiaro R, Canavesio Y. Reward-system effect (BAS rating), left hemispheric “unbalance” (alpha band oscillations) and decisional impairments in drug addiction. Addict Behav. 2014;39:1026–32. https://doi.org/10.1016/j.addbeh.2014.02.007.

    Article  PubMed  Google Scholar 

  136. Rapinesi C, Bersani FS, Kotzalidis GD, Imperatori C, Del Casale A, Di Pietro S, Ferri VR, Serata D, Raccah RN, Zangen A, Angeletti G, Girardi P. Maintenance deep transcranial magnetic stimulation sessions are associated with reduced depressive relapses in patients with unipolar or bipolar depression. Front Neurol. 2015;6:16. https://doi.org/10.3389/fneur.2015.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Senova S, Cotovio G, Pascual-Leone A, Oliveira-Maia AJ. Durability of antidepressant response to repetitive transcranial magnetic stimulation: systematic review and meta-analysis. Brain Stimul. 2019;12:119–28. https://doi.org/10.1016/j.brs.2018.10.001.

    Article  PubMed  Google Scholar 

  138. Dieler AC, Dresler T, Joachim K, Deckert J, Herrmann MJ, Fallgatter AJ. Can intermittent theta burst stimulation as add-on to psychotherapy improve nicotine abstinence? Results from a pilot study. Eur Addict Res. 2014;20:248–53. https://doi.org/10.1159/000357941.

    Article  PubMed  Google Scholar 

  139. Goldsworthy MR, Pitcher JB, Ridding MC. Neuroplastic modulation of inhibitory motor cortical networks by spaced theta burst stimulation protocols. Brain Stimul. 2013;6:340–5. https://doi.org/10.1016/j.brs.2012.06.005.

    Article  PubMed  Google Scholar 

  140. Monte-Silva K, Kuo M-F, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, Nitsche MA. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6:424–32. https://doi.org/10.1016/j.brs.2012.04.011.

    Article  PubMed  Google Scholar 

  141. Thickbroom GW. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res. 2007;180:583–93. https://doi.org/10.1007/s00221-007-0991-3.

    Article  PubMed  Google Scholar 

  142. Tse NY, Goldsworthy MR, Ridding MC, Coxon JP, Fitzgerald PB, Fornito A, Rogasch NC. The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation. Sci Rep. 2018;8:8526. https://doi.org/10.1038/s41598-018-26791-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Modirrousta M, Meek BP, Wikstrom SL. Efficacy of twice-daily vs once-daily sessions of repetitive transcranial magnetic stimulation in the treatment of major depressive disorder: a retrospective study. Neuropsychiatr Dis Treat. 2018;14:309–16. https://doi.org/10.2147/NDT.S151841.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Trojak B, Sauvaget A, Fecteau S, Lalanne L, Chauvet-Gelinier J-C, Koch S, Bulteau S, Zullino D, Achab S. Outcome of non-invasive brain stimulation in substance use disorders: a review of randomized sham-controlled clinical trials. J Neuropsychiatry Clin Neurosci. 2017;29:105–18. https://doi.org/10.1176/appi.neuropsych.16080147.

    Article  PubMed  Google Scholar 

  145. Duecker F, Sack AT. Rethinking the role of sham TMS. Front Psychol. 2015;6:210. https://doi.org/10.3389/fpsyg.2015.00210.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cunningham AD, Jacqueline Cavendish J, Sankarasubramanian V, Potter-Baker KA, Machado AJ, Plow EB. The influence of sham repetitive transcranial magnetic stimulation on commonly collected TMS metrics in patients with chronic stroke. Brain Stimul. 2017;10(4):e24–5.

    Article  Google Scholar 

  147. Brunoni AR, Sampaio-Junior B, Moffa AH, Aparicio LV, Gordon P, Klein I, Rios RM, Razza LB, Loo C, Padberg F, Valiengo L. Noninvasive brain stimulation in psychiatric disorders: a primer. Rev Bras Psiquiatr. 2019;41:70–81. https://doi.org/10.1590/1516-4446-2017-0018.

    Article  PubMed  Google Scholar 

  148. Mansur CG, Myczkowki ML, de Barros Cabral S, Sartorelli MC, Bellini BB, Dias AM, Bernik MA, Marcolin MA. Placebo effect after prefrontal magnetic stimulation in the treatment of resistant obsessive-compulsive disorder: a randomized controlled trial. Int J Neuropsychopharmacol. 2011;14(10):1389–97 . Epub 2011 Apr 18. https://doi.org/10.1017/S1461145711000575.

    Article  PubMed  Google Scholar 

  149. Ersche KD, Turton AJ, Croudace T, Stochl J. Who do you think is in control in addiction? A pilot study on drug-related locus of control beliefs. Addict Disord Their Treat. 2012;11:173–223. https://doi.org/10.1097/ADT.0b013e31823da151.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Opitz A, Legon W, Mueller J, Barbour A, Paulus W, Tyler WJ. Is sham cTBS real cTBS? The effect on EEG dynamics. Front Hum Neurosci. 2015;8:1043. https://doi.org/10.3389/fnhum.2014.01043.

  151. Beveridge TJR, Smith HR, Nader MA, Porrino LJ. Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology. 2009;34:1162–71. https://doi.org/10.1038/npp.2008.135.

    Article  CAS  PubMed  Google Scholar 

  152. Coles AS, Kozak K, George TP. A review of brain stimulation methods to treat substance use disorders. Am J Addict. 2018;27(2):71-91. https://doi.org/10.1111/ajad.12674.

  153. Wing VC, Barr MS, Wass CE, Lipsman N, Lozano AM, Daskalakis ZJ, George TP. Brain stimulation methods to treat tobacco addiction. Brain Stimul. 2013;6:221–30. https://doi.org/10.1016/j.brs.2012.06.008.

    Article  PubMed  Google Scholar 

  154. Ceccanti M, Inghilleri M, Attilia ML, Raccah R, Fiore M, Zangen A, Ceccanti M. Deep TMS on alcoholics: effects on cortisolemia and dopamine pathway modulation. A pilot study. Can J Physiol Pharmacol. 2015;93:283–90. https://doi.org/10.1139/cjpp-2014-0188.

    Article  CAS  PubMed  Google Scholar 

  155. Lucatch AM, Lowe DJE, Clark RC, Kozak K, George TP. Neurobiological determinants of tobacco smoking in schizophrenia. Front Psych. 2018;9:672. https://doi.org/10.3389/fpsyt.2018.00672.

    Article  Google Scholar 

  156. Martinotti G, Santacroce R, Pettorruso M, Montemitro C, Spano MC, Lorusso M, di Giannantonio M, Lerner AG. Hallucinogen Persisting Perception Disorder: Etiology, Clinical Features, and Therapeutic Perspectives. Brain Sci. 2018 Mar 16;8(3). pii: E47. https://doi.org/10.3390/brainsci8030047.

  157. Spagnolo PA, Montemitro C, Pettorruso M, Martinotti G, Di Giannantonio M. Better Together? Coupling Pharmacotherapies and Cognitive Interventions With Non-invasive Brain Stimulation for the Treatment of Addictive Disorders. Front Neurosci. 2020 Jan 10;13:1385. https://doi.org/10.3389/fnins.2019.01385.

  158. Salling MC, Martinez D. Brain stimulation in addiction. Neuropsychopharmacology. 2016;41:2798–809. https://doi.org/10.1038/npp.2016.80.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Trojak B, Meille V, Achab S, Lalanne L, Poquet H, Ponavoy E, Blaise E, Bonin B, Chauvet-Gelinier J-C. Transcranial magnetic stimulation combined with nicotine replacement therapy for smoking cessation: a randomized controlled trial. Brain Stimul. 2015;8:1168–74. https://doi.org/10.1016/j.brs.2015.06.004.

    Article  PubMed  Google Scholar 

  160. Martinotti G, Lupi M, Montemitro C, Miuli A, Di Natale C, Spano MC, Mancini V, Lorusso M, Stigliano G, Tambelli A, Di Carlo F, Di Caprio L, Fraticelli S, Chillemi E, Pettorruso M, Sepede G, di Giannantonio M. Transcranial direct current stimulation reduces craving in substance use disorders: a double-blind, placebo-controlled study. J ECT. 2019a;35(3):207–11. https://doi.org/10.1097/YCT.0000000000000580.

    Article  CAS  PubMed  Google Scholar 

  161. Martinotti G, Montemitro C, Pettorruso M, Viceconte D, Alessi MC, Di Carlo F, Lucidi L, Picutti E, Santacroce R, Di Giannantonio M. Augmenting pharmacotherapy with neuromodulation techniques for the treatment of bipolar disorder: a focus on the effects of mood stabilizers on cortical excitability. Expert Opin Pharmacother. 2019b:1–14. https://doi.org/10.1080/14656566.2019.1622092.

  162. Jansen JM, Daams JG, Koeter MWJ, Veltman DJ, van den Brink W, Goudriaan AE. Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 2013;37:2472–80. https://doi.org/10.1016/j.neubiorev.2013.07.009.

    Article  PubMed  Google Scholar 

  163. Schluter RS, Daams JG, van Holst RJ, Goudriaan AE. Effects of non-invasive neuromodulation on executive and other cognitive functions in addictive disorders: a systematic review. Front Neurosci. 2018;12:642. https://doi.org/10.3389/fnins.2018.00642.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Pettorruso M, di Giannantonio M, De Risio L, Martinotti G, Koob GF. A light in the darkness: repetitive transcranial magnetic stimulation (rTMS) to treat the hedonic dysregulation of addiction. J Addict Med. 2019; https://doi.org/10.1097/ADM.0000000000000575.

  165. Sturgess JE, George TP, Kennedy JL, Heinz A, Muller DJ. Pharmacogenetics of alcohol, nicotine and drug addiction treatments. Addict Biol. 2011;16:357–76. https://doi.org/10.1111/j.1369-1600.2010.00287.x.

    Article  CAS  PubMed  Google Scholar 

  166. Spano MC, Lorusso M, Pettorruso M, Zoratto F, Di Giuda D, Martinotti G, di Giannantonio M. Anhedonia across borders: Transdiagnostic relevance of reward dysfunction for noninvasive brain stimulation endophenotypes. CNS Neurosci Ther. 2019 Nov;25(11):1229–36. https://doi.org/10.1111/cns.13230.

  167. Pettorruso M, Martinotti G, Montemitro C, Miuli A, Spano MC, Lorusso M, Vellante F, di Giannantonio M. Craving and Other Transdiagnostic Dimensions in Addiction: Toward Personalized Neuromodulation Treatments. J ECT. 2020;6. https://doi.org/10.1097/YCT.0000000000000643.

  168. Ibrahim C, Rubin-Kahana DS, Pushparaj A, Musiol M, Blumberger DM, Daskalakis ZJ, Zangen A, Le Foll B. The insula: a brain stimulation target for the treatment of addiction. Front Pharmacol. 2019;10:720. https://doi.org/10.3389/fphar.2019.00720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Martinotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinotti, G. et al. (2020). Repetitive Transcranial Magnetic Stimulation in Addiction. In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43356-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43356-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43355-0

  • Online ISBN: 978-3-030-43356-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics