Skip to main content

Application of Modified Metal Oxide Electrodes in Photoelectrochemical Removal of Organic Pollutants from Wastewater

  • Chapter
  • First Online:
Nanostructured Metal-Oxide Electrode Materials for Water Purification

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The scarcity of clean water due to the increase in ground and surface water pollution by numerous pollutants from municipal, industrial, and agricultural sources is considered to be the most pressing environmental problem and a threat to the survival of humans. Among the methods being tested for the sustainable removal of these pollutants from water before use or disposed into the environment is photoelectrochemical degradation. This technique is a combination of electrochemical oxidation and heterogeneous photocatalytic degradation and involves the use of metal oxide semiconductor-based electrodes in the presence of light. This process begins with the generation of electrons by the metal oxide semiconductors which react with oxygen and water molecules to produce oxidants including superoxide and hydroxyl radicals which are responsible for the degradation of the pollutants. The efficacy of this process is, however, hampered by the high rate at which the electrons recombine with the co-generated holes and the poor visible light activity of the semiconductors due to their wide band gaps. A number of modifications have been made to the semiconductors to resolve the above-mentioned problems and improve on the efficiency of the photoelectrochemical degradation process. This chapter dwells mainly on the various modifications that have been made to the metal oxides including the use of carbon-based and polymeric materials, doping with metal, doping with non-metals, co-doping with metals and non-metals and formation of mixed metal oxide/heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores. Technol. 77(3), 247–255 (2001)

    Article  CAS  Google Scholar 

  2. P.H. Gleick, A look at twenty-first-century water resources development. Water Int. 25(1), 127–138 (2000)

    Article  Google Scholar 

  3. S.H. Chan, WuT Yeong, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 86(9), 1130–58 (2011)

    Article  CAS  Google Scholar 

  4. H.Y. Shu, M.C. Chang, H.H. Yu, W.H. Chen, Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles. J. Colloid Interface Sci. 314(1), 89–97 (2007)

    Article  CAS  Google Scholar 

  5. M.I. Litter, Introduction to photochemical advanced oxidation processes for water treatment, in Environmental Photochemistry Part II (Springer, Berlin, 2005), pp. 325–366

    Google Scholar 

  6. B. Ntsendwana, S. Sampath, B.B. Mamba, O.A. Arotiba, Photoelectrochemical oxidation of p-nitrophenol on an expanded graphite–TiO2 electrode. Photochem. Photobiol. Sci. 12(6), 1091–1102 (2013)

    Article  CAS  Google Scholar 

  7. F. Chen, F. Yan, Q. Chen, Y. Wang, L. Han, Z. Chen, S. Fang, Fabrication of Fe3O4–SiO2–TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Dalton Trans. 43(36), 13537–13544 (2014)

    Article  CAS  Google Scholar 

  8. J. Li, S. Lv, Y. Liu, J. Bai, B. Zhou, X. Hu, Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. J. Hazard. Mater. 262, 482–488 (2013)

    Article  CAS  Google Scholar 

  9. H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, J.B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4), 534–551 (2012)

    Article  CAS  Google Scholar 

  10. K.S. Siddhapara, D.V. Shah, Experimental study of transition metal ion doping on TiO2 with photocatalytic behavior. J. Nanosci. Nanotechnol. 14(8), 6337–6341 (2014)

    Article  CAS  Google Scholar 

  11. Y. Zhu, F. Piscitelli, G.G. Buonocore, M. Lavorgna, E. Amendola, L. Ambrosio, Effect of surface fluorination of TiO2 particles on photocatalitytic activity of a hybrid multilayer coating obtained by sol-gel method. ACS Appl. Mater. Interfaces. 4(1), 150–157 (2011)

    Article  CAS  Google Scholar 

  12. S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8(3), 731–759 (2015)

    Article  CAS  Google Scholar 

  13. L. Pan, J.J. Zou, X. Zhang, L. Wang, Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 133(26), 10000–10002 (2011)

    Article  CAS  Google Scholar 

  14. J.N. Schrauben, R. Hayoun, C.N. Valdez, M. Braten, L. Fridley, J.M. Mayer, Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 336(6086), 1298–1301 (2012)

    Article  CAS  Google Scholar 

  15. Y. Bai, H. Yu, Z. Li, R. Amal, G.Q. Lu, L. Wang, In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv. Mater. 24(43), 5850–5856 (2012)

    Article  CAS  Google Scholar 

  16. A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, A.K. Geim, Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11(6), 2396–2399 (2011)

    Article  CAS  Google Scholar 

  17. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197 (2005)

    Google Scholar 

  18. Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44(3), 637–646 (2015)

    Article  CAS  Google Scholar 

  19. X.H. Zhou, L.H. Liu, X. Bai, H.C. Shi, A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples. Sens. Actuators B: Chem. 181, 661–667 (2013)

    Article  CAS  Google Scholar 

  20. E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Photoelectrochemical degradation of orange II dye in wastewater at a silver–zinc oxide/reduced graphene oxide nanocomposite photoanode. RSC Adv. 6(58), 52868–52877 (2016)

    Article  CAS  Google Scholar 

  21. F.C. Moraes, L.F. Gorup, R.S. Rocha, M.R. Lanza, E.C. Pereira, Photoelectrochemical removal of 17β-estradiol using a RuO2-graphene electrode. Chemosphere 162, 99–104 (2016)

    Article  CAS  Google Scholar 

  22. M. Wang, X. Shang, X. Yu, R. Liu, Y. Xie, H. Zhao et al., Graphene–CdS quantum dots-polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation. Phys. Chem. Chem. Phys. 16(47), 26016–26023 (2014)

    Article  CAS  Google Scholar 

  23. Q. Shi, X. Song, H. Wang, Z. Bian, Enriched photoelectrochemical performance of phosphate doped BiVO4 photoelectrode by coupling FeOOH and rGO. J. Electrochem. Soc. 165(4), H3018–H3027 (2018)

    Article  CAS  Google Scholar 

  24. P. Ramesh, G.S. Suresh, S. Sampath, Selective determination of dopamine using unmodified, exfoliated graphite electrodes. J. Electroanal. Chem. 561, 173–180 (2004)

    Article  CAS  Google Scholar 

  25. B. Ntsendwana, B.B. Mamba, S. Sampath, O.A. Arotiba, Synthesis, characterisation and application of an exfoliated graphite–diamond composite electrode in the electrochemical degradation of trichloroethylene. RSC Adv. 3(46), 24473–24483 (2013)

    Article  CAS  Google Scholar 

  26. O.M. Ama, Exfoliated graphite/tungsten trioxide nanocomposite electrode for the photoelectrochemical degradation of eosin yellow and methylene blue in wastewater. Int. J. Sci. Res. Methodol. Hum. 8(3), 23–38 (2017)

    Google Scholar 

  27. O.M. Ama, K. Khoele, W.W. Anku, S.R. Suprakas, Photoelectrochemical degradation of 4-nitrophenol using CuOZnO/exfoliated graphite nanocomposite electrode. Int. J. Electrochem. Sci. 14(3), 2893–2905 (2019)

    CAS  Google Scholar 

  28. X. Yu, L. Qiang, Preparation for graphite materials and study on electrochemical degradation of phenol by graphite cathodes. Adv. Mater. Phys. Chem. 2(02), 63 (2012)

    Article  CAS  Google Scholar 

  29. N.G. Sahoo, S. Rana, J.W. Cho, L. Li, S.H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35(7), 837–867 (2010)

    Article  CAS  Google Scholar 

  30. Y. Cong, X. Li, Y. Qin, Z. Dong, G. Yuan, Z. Cui, X. Lai, Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl. Catal. B 107(1–2), 128–134 (2011)

    Article  CAS  Google Scholar 

  31. B.K. Vijayan, N.M. Dimitrijevic, D. Finkelstein-Shapiro, J. Wu, K.A. Gray, Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites. Acs Catal. 2(2), 223–229 (2012)

    Article  CAS  Google Scholar 

  32. C.Y. Kuo, Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J. Hazard. Mater. 163(1), 239–244 (2009)

    Article  CAS  Google Scholar 

  33. F.W.P. Ribeiro, L.H. Mascaro, S.A. Alves, Visible light-induced photoelectrocalalytic degradation of 4-nitrophenol on BiVO4/carbon nanotube electrode. In Meeting Abstracts (The Electrochemical Society, 2015), Vol. 30, pp. 1732–1732

    Google Scholar 

  34. D. Chaudhary, S. Singh, V.D. Vankar, N. Khare, ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J. Photochem. Photobiol., A 351, 154–161 (2018)

    Article  CAS  Google Scholar 

  35. Ivana, C. (2019). Enhancement of photoelectrocatalysis efficiency of carbon nanotubes doped with TiO2 nanostructures applied on pesticide degradation. Compos. Mater. Res. 6(3)

    Google Scholar 

  36. Á. Jakab, A. Pop, C. Orha, F. Manea, R. Pode, Electrochemical degradation and determination of pentachlorophenol from water using TiO2-modified zeolite-carbon composite electrodes. Environ. Eng. Manag. J. 13(9), 2159–2165 (2014)

    Article  CAS  Google Scholar 

  37. F.J. Zhang, M.L. Chen, W.C. Oh, Characterization of CNT/TiO2 electrode prepared through impregnation with TNB and their photoelectrocatalytic properties. Environ. Eng. Res. 14(1), 32–40 (2009)

    Article  Google Scholar 

  38. Z. He, Y. Li, Q. Zhang, H. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis. Appl. Catal. B 93(3–4), 376–382 (2010)

    Article  CAS  Google Scholar 

  39. I. Bedja, P.V. Kamat, Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites. J. Phys. Chem. 99(22), 9182–9188 (1995)

    Google Scholar 

  40. M. Shestakova, P. Bonete, R. Gómez, M. Sillanpää, W.Z. Tang, Novel Ti/Ta2O5–SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics. Electrochim. Acta 120, 302–307 (2014)

    Article  CAS  Google Scholar 

  41. R.T. Pelegrini, R.S. Freire, N. Duran, R. Bertazzoli, Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode: process test for a phenol synthetic solution and its application for the E1 bleach kraft mill effluent. Environ. Sci. Technol. 35(13), 2849–2853 (2001)

    Article  CAS  Google Scholar 

  42. Q. Zhou, A. Xing, D. Zhao, K. Zhao, Tetrabromobisphenol A photoelectrocatalytic degradation using reduced graphene oxide and cerium dioxide comodified TiO2 nanotube arrays as electrode under visible light. Chemosphere 165, 268–276 (2016)

    Article  CAS  Google Scholar 

  43. X. Wen, H. Zhang, Photoelectrochemical properties of CuS–GeO2–TiO2 composite coating electrode. PLoS ONE 11(4), e0152862 (2016)

    Article  CAS  Google Scholar 

  44. D. Hongxing, L. Qiuping, H. Yuehui, Preparation of nanoporous BiVO4/TiO2/Ti film through electrodeposition for photoelectrochemical water splitting. R. Soc. Open Sci. 5(9), 180728 (2018)

    Article  CAS  Google Scholar 

  45. P. Sathishkumar, R.V. Mangalaraja, S. Anandan, M. Ashokkumar, CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem. Eng. J. 220, 302–310 (2013)

    Article  CAS  Google Scholar 

  46. Y. Cao, Y. Yu, P. Zhang, L. Zhang, T. He, Y. Cao, An enhanced visible-light photocatalytic activity of TiO2 by nitrogen and nickel–chlorine modification. Sep. Purif. Technol. 104, 256–262 (2013)

    Article  CAS  Google Scholar 

  47. H. Xu, A. Li, X. Cheng, Electrochemical performance of doped SnO2 coating on Ti base as electrooxidation anode. Int. J. Electrochem. Sci. 6, 5114–5124 (2011)

    CAS  Google Scholar 

  48. C. He, M. Abou Asi, Y. Xiong, D. Shu, X. Li, Photoelectrocatalytic degradation of organic pollutants in aqueous solution using a Pt–TiO2 Film. Int. J. Photoenergy (2009)

    Google Scholar 

  49. S. Ghasemian, D. Nasuhoglu, S. Omanovic, V. Yargeau, Photoelectrocatalytic degradation of pharmaceutical carbamazepine using Sb-doped Sn80%–W20%-oxide electrodes. Sep. Purif. Technol. 188, 52–59 (2017)

    Article  CAS  Google Scholar 

  50. M.S. Morsi, A.A. Al-Sarawy, W.S. El-Dein, Electrochemical degradation of some organic dyes by electrochemical oxidation on a Pb/PbO2 electrode. Desalin. Water Treat. 26(1–3), 301–308 (2011)

    Article  CAS  Google Scholar 

  51. M. Ghaffari, H. Huang, P.Y. Tan, O.K. Tan, Synthesis and visible light photocatalytic properties of SrTi (1–x) FexO (3 − δ) powder for indoor decontamination. Powder Technol. 225, 221–226 (2012)

    Article  CAS  Google Scholar 

  52. H. Wang, J.P. Lewis, Effects of dopant states on photoactivity in carbon-doped TiO2. J. Phys.: Condens. Matter 17(21), L209 (2005)

    CAS  Google Scholar 

  53. J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14(9), 3808–3816 (2002)

    Article  CAS  Google Scholar 

  54. M. Wang, J. Ioccozia, L. Sun, C. Lin, Z. Lin, Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy Environ. Sci. 7(7), 2182–2202 (2014)

    Article  CAS  Google Scholar 

  55. F. Montilla, G. Quijano, D. Alonso, E. Morallon, Synthetic Boron-Doped Diamond Electrodes for Electrochemical Water Treatment (2014)

    Google Scholar 

  56. E.L. Castellanos-Leal, P. Acevedo-Peña, V.R. Güiza-Argüello, E.M. Córdoba-Tuta, N and F codoped TiO2 thin films on stainless steel for photoelectrocatalytic removal of cyanide ions in aqueous solutions. Mater. Res. 20(2), 487–495 (2017)

    Article  CAS  Google Scholar 

  57. D. Liu, R. Tian, J. Wang, E. Nie, X. Piao, X. Li, Z. Sun, Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 185, 574–581 (2017)

    Article  CAS  Google Scholar 

  58. J.C. Calva-Yáñez, M.S. de la Fuente, M. Ramírez-Vargas, M.E. Rincón, Photoelectrochemical performance and carrier lifetime of electrodes based on MWCNT-templated TiO2 nanoribbons. Mater. Renew. Sustain. Energy 7(3), 19 (2018)

    Article  Google Scholar 

  59. S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 108(50), 19384–19387 (2004)

    Article  CAS  Google Scholar 

  60. M. Xing, Y. Wu, J. Zhang, F. Chen, Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO. Nanoscale 2(7), 1233–1239 (2010)

    Article  CAS  Google Scholar 

  61. Y.F. Li, D. Xu, J.I. Oh, W. Shen, X. Li, Y. Yu, Mechanistic study of codoped titania with nonmetal and metal ions: a case of C + Mo codoped TiO2. Acs Catalysis 2(3), 391–398 (2012)

    Article  CAS  Google Scholar 

  62. G. Yan, M. Zhang, J. Hou, J. Yang, Photoelectrochemical and photocatalytic properties of N + S co-doped TiO2 nanotube array films under visible light irradiation. Mater. Chem. Phys. 129(1–2), 553–557 (2011)

    Article  CAS  Google Scholar 

  63. X. Zhou, Y. Zheng, D. Liu, S. Zhou, Photoelectrocatalytic degradation of humic acids using codoped TiO2 film electrodes under visible light. Int. J. Photoenergy (2014)

    Google Scholar 

  64. P. Wang, M. Cao, Y. Ao, C. Wang, J. Hou, J. Qian, Investigation on Ce-doped TiO2-coated BDD composite electrode with high photoelectrocatalytic activity under visible light irradiation. Electrochem. Commun. 13(12), 1423–1426 (2011)

    Article  CAS  Google Scholar 

  65. X. Zhou, S. Zhou, X. Feng, Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti) by response surface methodology. PLoS ONE 12(7), e0171234 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Wilson Anku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anku, W.W., Ama, O.M., Ray, S.S., Osifo, P.O. (2020). Application of Modified Metal Oxide Electrodes in Photoelectrochemical Removal of Organic Pollutants from Wastewater. In: Ama, O., Ray, S. (eds) Nanostructured Metal-Oxide Electrode Materials for Water Purification. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-43346-8_9

Download citation

Publish with us

Policies and ethics