Skip to main content

Technological Advances and Challenges in Chemical Mechanical Polishing

  • Chapter
  • First Online:
Advances in Abrasive Based Machining and Finishing Processes

Abstract

It has been already several decades since chemical mechanical polishing (CMP) process has been deployed as a planarization technique for the fabrication of integrated circuit (IC) in the semiconductor industries.  CMP is considered to be a wet polishing technique that has the capability to generate ultrafine surfaces for numerous materials using the combined effect of chemical and mechanical interactions. As CMP involves both mechanical and chemical actions, the process efficiency of CMP also varies with the parameters involved with mechanical and chemical aspects. This chapter presents an overview of CMP technology, working principles, its recent advancement status in terms of green slurry development, abrasives development, new polishing method, research trends and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore GE (1965) Cramming more components onto integrated circuits. McGraw-Hill, New York, USA

    Google Scholar 

  2. Chang CY, Sze SM (1996) ULSI technology. McGraw-Hill

    Google Scholar 

  3. Kahng AB, Samadi K (2007) CMP fill synthesis: A survey of recent studies. IEEE Trans Comput Aided Des Integr Circ Syst 27(1):3–19

    Article  Google Scholar 

  4. Ryan JG, Geffken RM, Poulin NR, Paraszczak JR (1995) The evolution of interconnection technology at IBM. IBM J Res Dev 39(4):371–381

    Article  Google Scholar 

  5. Bai P, Auth C, Balakrishnan S, Bost M, Brain R, Chikarmane V, Heussner R, Hussein M, Hwang J, Ingerly D (2004) A 65 nm logic technology featuring 35 nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57/spl mu/m/sup 2/SRAM cell. In: IEDM technical digest. IEEE international electron devices meeting, 2004. IEEE, pp 657–660

    Google Scholar 

  6. Zantye PB, Kumar A, Sikder A (2004) Chemical mechanical planarization for microelectronics applications. Mater Sci Eng R Rep 45(3–6):89–220

    Article  Google Scholar 

  7. Landis H, Burke P, Cote W, Hill W, Hoffman C, Kaanta C, Koburger C, Lange W, Leach M, Luce S (1992) Integration of chemical-mechanical polishing into CMOS integrated circuit manufacturing. Thin Solid Films 220(1–2):1–7

    Article  Google Scholar 

  8. Kim HJ, Kim HY, Jeong HD, Lee SH, Dornfeld D (2003) Kinematic analysis of chemical mechanical polishing and its effect on polishing results. In: Key Engineering Materials. Trans Tech Publications Ltd, pp 229–234

    Google Scholar 

  9. Oliver MR (2013) Chemical-mechanical planarization of semiconductor materials, vol 69. Springer Science & Business Media

    Google Scholar 

  10. Huang C, Zhou H, Zhu Y, Xia C (2019) Effect of chemical action on the chemical mechanical polishing of β-Ga2O3 (100) substrate. Precision Eng 56:184–190

    Article  Google Scholar 

  11. Zhao D, Lu X (2013) Chemical mechanical polishing: theory and experiment. Friction 1(4):306–326

    Article  Google Scholar 

  12. Runnels SR (1994) Feature-scale fluid-based erosion Modeling for chemical-mechanical polishing. J Electrochem Soc 141(7):1900–1904

    Article  Google Scholar 

  13. Nakamura T, Akamatsu K, Arakawa N (1985) A bowl feed and double sides polishing for silicon wafer for VLSI. Bull JSPE 19(6):120

    Google Scholar 

  14. Cook L, Wang J, James D, Sethuraman A (1995) Theoretical and practical aspects of dielectric and metal CMP. Semicond Int 18(13):141–143

    Google Scholar 

  15. Rudawska A (2018) Abrasive technology: characteristics and applications. BoD–books on demand

    Google Scholar 

  16. Zhou C, Shan L, Hight JR, Danyluk S, Ng S, Paszkowski AJ (2002) Influence of colloidal abrasive size on material removal rate and surface finish in SiO2 chemical mechanical polishing. Tribol Trans 45(2):232–238

    Article  Google Scholar 

  17. Gaidarzhy A, Imboden M, Mohanty P, Rankin J, Sheldon BW (2007) High quality factor gigahertz frequencies in nanomechanical diamond resonators. Appl Phys Lett 91(20):203503

    Article  Google Scholar 

  18. Zhou J, Niu X, Cui Y, Wang Z, Wang J, Wang R (2019) Study on the film forming mechanism, corrosion inhibition effect and synergistic action of two different inhibitors on copper surface chemical mechanical polishing for GLSI. Appl Surf Sci 144507

    Google Scholar 

  19. Zhao Y, Chang L (2002) A micro-contact and wear model for chemical–mechanical polishing of silicon wafers. Wear 252(3–4):220–226

    Article  Google Scholar 

  20. Oh M-H, Singh RK, Gupta S, Cho S-B (2010) Polishing behaviors of single crystalline ceria abrasives on silicon dioxide and silicon nitride CMP. Microelectron Eng 87(12):2633–2637

    Article  Google Scholar 

  21. Neirynck JM, Yang G-R, Murarka SP, Gutmann RJ (1996) The addition of surfactant to slurry for polymer CMP: effects on polymer surface, removal rate and underlying Cu. Thin Solid Films 290:447–452

    Article  Google Scholar 

  22. Xu W, Cheng Y, Zhong M (2019) Effects of process parameters on chemical-mechanical interactions during sapphire polishing. Microelectron Eng 216

    Google Scholar 

  23. Pirayesh H, Cadien K (2015) Chemical mechanical polishing in the dry lubrication regime: Application to conductive polysilicon. J Mater Process Technol 220:257–263

    Article  Google Scholar 

  24. Kamigata Y, Kurata Y, Masuda K, Amanokura J, Yoshida M, Hanazono M (2001) Why abrasive free Cu slurry is promising? MRS Online Proc Lib Arch 671

    Google Scholar 

  25. Lei H, Tong K (2016) Preparation of La-doped colloidal SiO2 composite abrasives and their chemical mechanical polishing behavior on sapphire substrates. Precision Eng 44:124–130

    Article  Google Scholar 

  26. Lei H, Liu T, Xu L (2019) Synthesis of Sm-doped colloidal SiO2 composite abrasives and their chemical mechanical polishing performances on sapphire substrates. Mater Chem Phys 121819

    Google Scholar 

  27. Zhu H, Tessaroto LA, Sabia R, Greenhut VA, Smith M, Niesz DE (2004) Chemical mechanical polishing (CMP) anisotropy in sapphire. Appl Surf Sci 236(1–4):120–130

    Article  Google Scholar 

  28. Xu Y, Lu J, Xu X (2016) Study on planarization machining of sapphire wafer with soft-hard mixed abrasive through mechanical chemical polishing. Appl Surf Sci 389:713–720

    Article  Google Scholar 

  29. Dong Y, Lei H, Liu W, Chen Y (2019) Preparation of ellipsoidal rod-shaped silica nanocomposite abrasives by Chromium ion/PEG200 induced method for sapphire substrates chemical mechanical polishing. J Alloy Compd 777:1294–1303

    Article  Google Scholar 

  30. Xu L, Lei H, Wang T, Dong Y, Dai S (2019) Preparation of flower-shaped silica abrasives by double system template method and its effect on polishing performance of sapphire wafers. Ceram Int 45(7):8471–8476

    Article  Google Scholar 

  31. Liu T, Lei H (2017) Nd3 + -doped colloidal SiO2 composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers. Appl Surf Sci 413:16–26

    Article  Google Scholar 

  32. Yin D, Niu X, Zhang K, Wang J, Cui Y (2018) Preparation of MgO doped colloidal SiO2 abrasive and their chemical mechanical polishing performance on c-, r-and a-plane sapphire substrate. Ceram Int 44(12):14631–14637

    Article  Google Scholar 

  33. Jindal A, Hegde S, Babu S (2002) Chemical mechanical polishing using mixed abrasive slurries. Electrochem Solid-State Lett 5(7):G48–G50

    Article  Google Scholar 

  34. Babu S (2016) Advances in chemical mechanical planarization (CMP). Woodhead Publishing

    Google Scholar 

  35. Kim HJ (2018) Abrasive for chemical mechanical polishing. abrasive technology: characteristics and applications. 183

    Google Scholar 

  36. Zhang Z, Wang B, Zhou P, Guo D, Kang R, Zhang B (2016) A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Sci Rep 6:22466

    Article  Google Scholar 

  37. Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11

    Article  Google Scholar 

  38. Xu L, Zou C, Shi X, Pan G, Luo G, Zhou Y (2015) Fe-Nx/C assisted chemical–mechanical polishing for improving the removal rate of sapphire. Appl Surf Sci 343:115–120

    Article  Google Scholar 

  39. Gupta V, Kumar A, Coutinho C, Mudhivarthi S (2015) U.S. Patent No. 9,120,952. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  40. Ryu J, Kim W, Yun J, Lee K, Lee J, Yu H, Kim JH, Kim JJ, Jang J (2018) Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization. ACS Appl Mater Interfaces 10(14):11843–11851

    Article  Google Scholar 

  41. Wang T, Lei H (2019) Novel polyelectrolyte–Al 2 O 3/SiO 2 composite nanoabrasives for improved chemical mechanical polishing (CMP) of sapphire. J Mater Res 34(6):1073–1082

    Article  Google Scholar 

  42. Rambabu S, Ramesh Babu N (2018) Empirical approach to develop a multilayer icebonded abrasive polishing tool for ultrafine finishing of Ti-6Al-4 V alloy. Mater Manuf Process 33(4):359–366

    Article  Google Scholar 

  43. Mohammadian N, Turenne S, Brailovski V (2018) Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J Mater Process Technol 252:728–738

    Article  Google Scholar 

  44. Murata J, Yodogawa K, Ban K (2017) Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles. Int J Mach Tools Manuf 114:1–7

    Article  Google Scholar 

  45. Chen F, Miao X, Tang Y, Yin S (2017) A review on recent advances in machining methods based on abrasive jet polishing (AJP). Int J Adv Manuf Technol 90(1–4):785–799

    Article  Google Scholar 

  46. Fang H, Guo P-J, Yu J-C (2004) Research on material removal mechanism of fluid jet polishing. Opt Tech 2

    Google Scholar 

  47. Lee D, Lee H, Jeong H (2016) Slurry components in metal chemical mechanical planarization (CMP) process: A review. Int J Precision Eng Manuf 17(12):1751–1762

    Article  Google Scholar 

  48. Information (2012) http://www.itrs.net/Links/2012ITRS/Home2012.htm

  49. Singer P (2003) Low-pressure CMP developed for 300 mm ultralow-k. Semicond Int 26(12):30–30

    Google Scholar 

  50. Banerjee G, Rhoades RL (2008) Chemical mechanical planarization historical review and future direction. ECS Trans 13(4):1–19

    Google Scholar 

  51. Doi T, Marinescu ID, Kurokawa S (2011) Advances in CMP polishing technologies. William Andrew

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Perveen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadimi Bavil Oliaei, S., Mukhtarkhanov, M., Perveen, A. (2020). Technological Advances and Challenges in Chemical Mechanical Polishing. In: Das, S., Kibria, G., Doloi, B., Bhattacharyya, B. (eds) Advances in Abrasive Based Machining and Finishing Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-43312-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43312-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43311-6

  • Online ISBN: 978-3-030-43312-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics