Skip to main content

Monte Carlo Strategies

  • Chapter
  • First Online:
Transport of Energetic Electrons in Solids

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 271))

  • 498 Accesses

Abstract

Monte Carlo is one of the most powerful theoretical methods for evaluating the physical quantities related to the interaction of electrons with a solid target. A Monte Carlo simulation can be considered as an idealized experiment. It is based on several fundamental ingredients. It is necessary to have a good knowledge of them—in particular of the energy loss and angular deflection phenomena—to obtain a good simulation. All the cross-sections and mean free paths have to be previously accurately calculated: they are then used in the Monte Carlo code in order to obtain the macroscopic characteristics of the interaction processes by simulating a large number of single particle trajectories and then averaging them. Due to the recent evolution in computer calculation capability, we are now able to obtain statistically significant results in very short calculation times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Horiguchi, M. Suzuki, T. Kobayashi, H. Yoshino, Y. Sakakibara, Appl. Phys. Lett. 39, 512 (1981)

    Article  ADS  Google Scholar 

  2. G. Messina, A. Paoletti, S. Santangelo, A. Tucciarone, La Rivista del Nuovo Cimento 15, 1 (1992)

    Article  ADS  Google Scholar 

  3. J.F. Perkins, Phys. Rev. 126, 1781 (1962)

    Article  ADS  Google Scholar 

  4. M. Dapor, Phys. Rev. B 46, 618 (1992)

    Article  ADS  Google Scholar 

  5. R. Shimizu, Ding Ze-Jun. Rep. Prog. Phys. 55, 487 (1992)

    Article  ADS  Google Scholar 

  6. R.H. Ritchie, Phys. Rev. 106, 874 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  8. J.P. Ganachaud, A. Mokrani, Surf. Sci. 334, 329 (1995)

    Article  ADS  Google Scholar 

  9. H. Bichsel, Nucl. Instrum. Methods Phys. Res. B 52, 136 (1990)

    Article  ADS  Google Scholar 

  10. L. Calliari, M. Dapor, G. Garberoglio, S. Fanchenko Surf, Interface Anal. 46, 340 (2014)

    Google Scholar 

  11. J. Llacer, E.L. Garwin, J. Appl. Phys. 40, 2766 (1969)

    Article  ADS  Google Scholar 

  12. M. Dapor, Nucl. Instrum. Methods Phys. Res. B 267, 3055 (2009)

    Article  ADS  Google Scholar 

  13. P. Kazemian, Progress Towards Quantitive Dopant Profiling with the Scanning Electron Microscope (Doctorate Dissertation, University of Cambridge, 2006)

    Google Scholar 

  14. Y.F. Chen, C.M. Kwei, Surf. Sci. 364, 131 (1996)

    Article  ADS  Google Scholar 

  15. Y.C. Li, Y.H. Tu, C.M. Kwei, C.J. Tung, Surf. Sci. 589, 67 (2005)

    Article  ADS  Google Scholar 

  16. A. Jablonski, C.J. Powell, Surf. Sci. 551, 106 (2004)

    Article  ADS  Google Scholar 

  17. M. Dapor, L. Calliari, S. Fanchenko, Surf. Interface Anal. 44, 1110 (2012)

    Article  Google Scholar 

  18. Z.-J. Ding, R. Shimizu, Phys. Rev. B 61, 14128 (2000)

    Article  ADS  Google Scholar 

  19. M. Novák, Surf. Sci. 602, 1458 (2008)

    Article  ADS  Google Scholar 

  20. M. Novák, J. Phys. D: Appl. Phys. 42, 225306 (2009)

    Article  ADS  Google Scholar 

  21. H. Jin, H. Yoshikawa, H. Iwai, S. Tanuma, S. Tougaard, e-J. Surf. Sci. Nanotech. 7, 199 (2009)

    Google Scholar 

  22. H. Jin, H. Shinotsuka, H. Yoshikawa, H. Iwai, S. Tanuma, S. Tougaard, J. Appl. Phys. 107, 083709 (2010)

    Article  ADS  Google Scholar 

  23. I. Kyriakou, D. Emfietzoglou, R. Garcia-Molina, I. Abril, K. Kostarelos, J. Appl. Phys. 110, 054304 (2011)

    Article  ADS  Google Scholar 

  24. B. Da, S.F. Mao, Y. Sun, and Z.J. Ding, e-J. Surf. Sci. Nanotechnol. 10, 441 (2012)

    Google Scholar 

  25. B. Da, Y. Sun, S.F. Mao, Z.M. Zhang, H. Jin, H. Yoshikawa, S. Tanuma, Z.J. Ding, J. Appl. Phys. 113, 214303 (2013)

    Article  ADS  Google Scholar 

  26. F. Salvat-Pujol, Secondary-Electron Emission from Solids: Coincidence Experiments and Dielectric Formalism (Doctorate Dissertation, Technischen Universität Wien, 2012)

    Google Scholar 

  27. F. Salvat-Pujol, W.S.M. Werner, Surf. Interface Anal. 45, 873 (2013)

    Article  Google Scholar 

  28. T. Tang, Z.M. Zhang, B. Da, J.B. Gong, K. Goto, Z.J. Ding, Phys. B 423, 64 (2013)

    Article  ADS  Google Scholar 

  29. D. Liljequist, Rad. Phys. Chem 77, 835 (2008)

    Article  ADS  Google Scholar 

  30. D. Liljequist, J. Electron. Spectrosc. Relat. Phenom. 189, 5 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Dapor .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dapor, M. (2020). Monte Carlo Strategies. In: Transport of Energetic Electrons in Solids. Springer Tracts in Modern Physics, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-43264-5_6

Download citation

Publish with us

Policies and ethics