Skip to main content

How to Analyse Microbial Communities?

  • Chapter
  • First Online:
Why Gut Microbes Matter

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Most micro-organisms exist in nature as complex mixtures which are referred to as microbial communities. Members of such communities potentially interact with each other in various ways, including as competitors, predators and symbionts. Communities range from extremely dense mixtures of organisms that are held together in biofilms by binding to each other and to a surface (e.g. in dental plaque), to the highly dilute communities that are found in nutrient-poor ocean water. Finding out what organisms are present within a microbial community and how they interact with each other is one of the most intriguing challenges in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A micron is one thousandth of a millimetre.

  2. 2.

    ‘dNTPs’ refers to nucleoside triphosphates carrying deoxyribose (dATP, dTTP, dGTP, dCTP) which are the precursors for DNA synthesis. Two phosphate groups are lost as each nucleotide is added to the chain.

References

  1. Barcenilla A et al (2000) Phylogenetic relationships of dominant butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    Article  CAS  Google Scholar 

  2. Sijpesteijn KA (1948) Cellulose-decomposing bacteria from the rumen of cattle. PhD thesis, University of Leiden, Netherlands

    Google Scholar 

  3. Chassard C et al (2010) The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 74:205–213

    Article  CAS  Google Scholar 

  4. Derrien M et al (2008) The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74:1646–1648

    Article  CAS  Google Scholar 

  5. Blattner FR et al (1997) The complete genome sequence of Escherichia coli K12. Science 277:1453–1462

    Article  CAS  Google Scholar 

  6. Suau A et al (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    Article  CAS  Google Scholar 

  7. Hold GL et al (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39:33–39

    Article  CAS  Google Scholar 

  8. Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  Google Scholar 

  9. Hugenholtz P et al (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    Article  CAS  Google Scholar 

  10. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:reviews0003.1

    Article  Google Scholar 

  11. Wegmann U et al (2014) Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (“Ruminococcus bicirculans”) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ Microbiol 16:2879–2890

    Article  CAS  Google Scholar 

  12. Van Dijk EL et al (2014) The third revolution in sequencing technologies. Trends Genet 34:666–681

    Article  Google Scholar 

  13. Rasko DA et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893

    Article  CAS  Google Scholar 

  14. Stewart PD et al (2018) Assembly of 913 microbial genomes from metagenomic sequencing of cow rumen. Nat Commun 9:art 870

    Article  Google Scholar 

  15. Dodd D et al (2010) Transcriptomic analysis of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic Bacteroidetes. J Biol Chem 285:30261–30273

    Article  CAS  Google Scholar 

  16. Hollywood K et al (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723

    Article  CAS  Google Scholar 

  17. Holmes E et al (2008) Metabolic phenotyping in health and disease. Cell 134:714–717

    Article  CAS  Google Scholar 

  18. Lopez Siles M et al (2014) Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int J Med Microbiol 304:464–475

    Article  Google Scholar 

  19. Walker AW et al (2008) The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol 10:3275–3289

    Article  CAS  Google Scholar 

  20. Swidsinski A et al (2008) Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 135:568–579

    Article  Google Scholar 

  21. Costea PI et al (2017) Towards standards for fecal sample processing in metegnomic studies. Nat Biotechnol 35:1069–1076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flint, H.J. (2020). How to Analyse Microbial Communities?. In: Why Gut Microbes Matter. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43246-1_3

Download citation

Publish with us

Policies and ethics