Skip to main content

Analytical Modelling for Laser Heating for Materials Processing and Surface Engineering

  • Chapter
  • First Online:
Surface Engineering of Modern Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Light amplification by stimulated emission of radiation (laser) is an organized monochromatic electromagnetic radiation beam which can proliferate linearly with negligible disparity and the source of energy is found in broad spectrum of wavelength. Laser has been witnessed as ample applications in thermal processing right from material processing to thermal therapy for cancer treatment. The laser processing of materials can be classified as: laser assisted machining, forming, joining and surface engineering. The emitted energy source from laser can be spotlighted into a small spot and it caters a large amount of intense energy which is quintessential for penetration in materials for surface treatment. In this book chapter, exact analytical solution of three-dimensional dual-phase-lag heat conduction model has been developed under the influence of non-Gaussian time and space dependent laser heat source. The corresponding mathematical solution is obtained with implementation of ‘Finite integral transform’ and ‘Duhamel’s theorem’. The consequence of lagging behaviour on laser heating has been studied. The laser heating process variables such as laser exposure, power density have been investigated with temperature variation. The development of surface thermal contours defines the heat flow in the substrate domain. The accuracy of present mathematical modelling has been justified based on the physical phenomena observed under laser heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bäuerle, D.: Laser Processing and Chemistry. Springer, Berlin (2000)

    Book  Google Scholar 

  2. Schaff, P.: Laser Processing of Materials: Fundamentals, Applications and Developments. Springer, Berlin, Heidelberg (2010)

    Book  Google Scholar 

  3. Dowden, J.M.: The Mathematics of Thermal Modelling: An Introduction to the Theory of Laser Material Processing. Chapman & Hall/CRC (2001)

    Google Scholar 

  4. Yilbas, B.: Laser Heating Applications: Analytical Modelling. Elsevier (2012)

    Google Scholar 

  5. Heller, J., Bartha, J.W., Poon, C.C., Tam, A.C.: Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm. Appl. Phys. Lett. 75(1), 41–43 (1999)

    Article  Google Scholar 

  6. Brown, M.S., Arnold, C.B.: Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification. Springer, Berlin, Heidelberg (2000)

    Google Scholar 

  7. Yilbas, B.S., Al-Dweik, A.Y., Al-Aqeeli, N., Al-Qahtani, H.M.: Laser Pulse Heating of Surfaces and Thermal Stress Analysis. Springer International Publishing, Switzerland (2014)

    Book  Google Scholar 

  8. Maiman, T.H.: Stimulated optical radiation in ruby. Nature 187(4736), 493–499 (1960)

    Article  Google Scholar 

  9. Fourier, J.: The Analytical Theory of Heat. Cambridge University Press, Cambridge Warehouse, London (1878)

    Google Scholar 

  10. Arpaci, V.S.: Conduction Heat Transfer. Addison-Wesley Pub. Co., the University of Michigan, Addisson Wesley Pub (1966)

    Google Scholar 

  11. Qiu, T.Q., Tien, L.: Femtosecond laser heating of multi-layer metals—I analysis. Int. J. Heat Mass Transf. 37, 2789–2797 (1994)

    Article  CAS  Google Scholar 

  12. Yilbas, B.S., Apalak, K.: The basic concepts of heat transfer mechanism during laser drilling of metals. Egypt J. Phys. 18(1), 25–34 (1987)

    Google Scholar 

  13. Yilbas, B.S., Kalyon, M.: Formulation of laser pulse heating: a closed form solution including heating and cooling cycles with pulse parameter variation. Laser Eng. 14(3–4), 213–228 (2004)

    Google Scholar 

  14. Yilbas, B.S.: Analytical solution for time unsteady laser pulse heating of semi-infinite solid. Int. J. Mech. Sci. 39(6), 671–672 (1997)

    Article  Google Scholar 

  15. Yilbas, B.S.: 3-Dimensional laser heating model including a moving heat source consideration and phase change process. Heat Mass Transf. 33, 495–505 (1998)

    Article  CAS  Google Scholar 

  16. Yilbas, B.S., Kalyon, M.: Analytical solution for pulsed laser heating process: convective boundary condition case. Int. J. Heat Mass Transf. 45, 1571–1582 (2002)

    Article  Google Scholar 

  17. Yilbas, B.S., Pakdemirli, M., Mansoor, S.B.: Analytical solution for temperature field in thin film initially heated by a short-pulse laser source. Heat Mass Transf. 41, 1077–1084 (2005)

    Article  CAS  Google Scholar 

  18. Kalyon, M., Yilbas, B.S.: An approach for analytical solution pertinent to lattice temperature variation due to laser short-pulse heating. Heat Mass Transf. 42, 1111–1117 (2006)

    Article  CAS  Google Scholar 

  19. Hsiao, F.B., Jen, C.P., Wang, D.B., Chuang, C.H., Lee, Y.C., Liu, C.P., Hsu, H.J.: An analytical modeling of heat transfer for laser-assisted nanoimprinting processes. Comput. Mech. 37, 173–181 (2006)

    Article  Google Scholar 

  20. Bouaziz, M.N., Boutalbi, N.: Laser heating of a material with time-dependent laser source. Int. J. Thermophys. 32, 1047–1059 (2011)

    Article  CAS  Google Scholar 

  21. Yilbas, B.S., Al-Dweik, A.Y., Mansour, S.B.: Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating. Phys. B 406, 1550–1555 (2011)

    Article  CAS  Google Scholar 

  22. Yilbas, B.S., Al-Dweik, A.Y.: Short-pulse heating and analytical solution to non equilibrium heating process. Phys. B 417, 28–32 (2013)

    Article  CAS  Google Scholar 

  23. Qi, H.T., Xu, H.Y., Guo, X.W.: The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 66, 824–831 (2013)

    Article  Google Scholar 

  24. Zhang, L., Shang, X.: Analytical solution to non-Fourier heat conduction as a laser beam irradiating on local surface of a semi-infinite medium. Int. J. Heat Mass Transf. 85, 772–780 (2015)

    Article  Google Scholar 

  25. Peng, Q.: An analytical solution for a transient temperature field during laser heating a finite slab. Appl. Math. Model. 40, 4129–4135 (2016)

    Article  Google Scholar 

  26. Chen, G., Wang, Y., Zhang, J., Bi, J.: An analytical solution for two-dimensional modeling of repetitive long pulse laser heating material. Int. J. Heat Mass Transf. 104, 503–509 (2017)

    Article  Google Scholar 

  27. Kashani, M.M., Movahhedy, M.R., Ahmadian, M.T.: Analytical solution of transient three-dimensional temperature field in a rotating cylinder subject to a localized laser beam. J Heat Transf. 139, 062701–1–062701–8 (2017)

    Article  Google Scholar 

  28. Chen, G.: Semi-analytical solutions for 2-D modeling of long pulsed laser heating metals with temperature dependent surface absorption. Optik 132, 46–51 (2017)

    Article  CAS  Google Scholar 

  29. Chen, G., Bi, J.: Analytical solutions for three-dimensional modeling of temperature rise inside solid material induced by laser irradiation. Optik 132, 80–88 (2017)

    Article  CAS  Google Scholar 

  30. Chen, G.: Axisymmetric modeling of long pulsed laser heating with convective boundary conditions using analytical solutions. Optik 130, 1038–1044 (2017)

    Article  Google Scholar 

  31. Feng, S., Huang, C., Wang, J., Zhu, H., Yao, P., Liu, Z.: An analytical model for the prediction of temperature distribution and evolution in hybrid laser-waterjet micro-machining. Prec. Eng. 47, 33–45 (2017)

    Article  Google Scholar 

  32. Ma, J., Sun, Y., Yang, J.: Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source. Int. J. Therm. Sci. 125, 34–43 (2018)

    Article  Google Scholar 

  33. Dutta, J., Kundu, B.: Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J. Therm. Biol. 71, 41–51 (2018)

    Article  Google Scholar 

  34. Dutta, J., Kundu, B.: A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments. J. Therm. Biol. 66, 33–48 (2017)

    Article  Google Scholar 

  35. Xu, F., Seffen, K.A., Liu, T.J.: Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51, 2237–2259 (2008)

    Article  CAS  Google Scholar 

  36. Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte. Rendus 247, 431–433 (1958)

    Google Scholar 

  37. Vernotte, P.: Les paradoxes de la theorie continue de l’ equation de la chaleur. Compte. Rendus 246, 3154–3155 (1958)

    Google Scholar 

  38. Tzou, D.Y.: A unified field approach for heat conduction from macro- to microscales. J Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  39. Hooshmand, P., Moradi, A., Khezry, B.: Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)

    Article  Google Scholar 

  40. Zhou, J., Zhang, Y., Chen, J.K.: An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues. Int. J. Therm. Sci. 48(8), 1477–1485 (2009)

    Article  Google Scholar 

  41. Ma, J., Yang, X., Sun, Y., Yang, J.: Thermal damage in three-dimensional vivo bio-tissues induced by moving heat sources in laser therapy. Sci. Rep. (Nature) 9, 10987 (2019)

    Article  CAS  Google Scholar 

  42. Tzou, D.Y.: Macro- To Micro-Scale Heat Transfer: The Lagging Behavior (Chemical and Mechanical Engineering Series). CRC Press (1996)

    Google Scholar 

  43. Ozisik, M.N.: Heat conduction. Wiley, Canada (1976)

    Google Scholar 

  44. Hahn, D.W., Ozisik, M.N.: Heat conduction. Wiley, New Jersey (2012)

    Book  Google Scholar 

  45. Dutta, J., Kundu, B.: Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy. Act. Mech. 230, 2853–2871 (2019)

    Article  Google Scholar 

Download references

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, J., Kundu, B., Soni, H., Mashinini, P.M. (2020). Analytical Modelling for Laser Heating for Materials Processing and Surface Engineering. In: Gupta, K. (eds) Surface Engineering of Modern Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-43232-4_5

Download citation

Publish with us

Policies and ethics