Skip to main content

Improving Locality-Aware Scheduling with Acyclic Directed Graph Partitioning

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12043))

  • 962 Accesses

Abstract

We investigate efficient execution of computations, modeled as Directed Acyclic Graphs (DAGs), on a single processor with a two-level memory hierarchy, where there is a limited fast memory and a larger slower memory. Our goal is to minimize execution time by minimizing redundant data movement between fast and slow memory. We utilize a DAG partitioner that finds localized, acyclic parts of the whole computation that can fit into fast memory, and minimizes the edge cut among the parts. We propose a new scheduler that executes each part one-by-one, obeying the dependency among parts, aiming at reducing redundant data movement needed by cut-edges. Extensive experimental evaluation shows that the proposed DAG-based scheduler significantly reduces redundant data movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbudak, K., Kayaaslan, E., Aykanat, C.: Hypergraph partitioning based models and methods for exploiting cache locality in sparse matrix-vector multiplication. SIAM J. Sci. Comput. 35(3), C237–C262 (2013)

    Article  MathSciNet  Google Scholar 

  2. Aktulga, H.M., Buluç, A., Williams, S., Yang, C.: Optimizing sparse matrix-multiple vectors multiplication for nuclear configuration interaction calculations. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp. 1213–1222, May 2014

    Google Scholar 

  3. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)

    Article  Google Scholar 

  4. Bramas, B.: Impact study of data locality on task-based applications through the Heteroprio scheduler. PeerJ. Comput. Sci. 5, e190 (2019)

    Article  Google Scholar 

  5. Chen, D., Liu, F., Ding, C., Pai, S.: Locality analysis through static parallel sampling. In: Proceedings of the 39th ACM SIGPLAN Conference on PLDI, pp. 557–570. ACM, New York (2018)

    Google Scholar 

  6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fauzia, N., et al.: Beyond reuse distance analysis: dynamic analysis for characterization of data locality potential. ACM Trans. Archit. Code Optim. 10(4), 53:1–53:29 (2013)

    Article  Google Scholar 

  9. Filippone, S., Cardellini, V., Barbieri, D., Fanfarillo, A.: Sparse matrix-vector multiplication on GPGPUs. ACM Trans. Math. Softw. 43(4), 30:1–30:49 (2017)

    Article  MathSciNet  Google Scholar 

  10. Fuller, S.H., Millett, L.I.: The Future of Computing Performance: Game Over or Next Level? National Academy Press, Washington DC (2011)

    Google Scholar 

  11. Gustedt, J., Jeannot, E., Mansouri, F.: Optimizing locality by topology-aware placement for a task based programming model. In: 2016 IEEE International Conference on Cluster Computing (CLUSTER), pp. 164–165, September 2016

    Google Scholar 

  12. Herrmann, J., Özkaya, M.Y., Uçar, B., Kaya, K., Çatalyürek, Ü.V.: Multilevel algorithms for acyclic partitioning of directed acyclic graphs. SIAM J. Sci. Comput. (SISC) 41(4), A2117–A2145 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hollman, D.S., Bennett, J.C., Kolla, H., Lifflander, J., Slattengren, N., Wilke, J.: Metaprogramming-enabled parallel execution of apparently sequential C++ code. In: 2016 Second International Workshop on Extreme Scale Programming Models and Middleware (ESPM2), pp. 24–31, November 2016

    Google Scholar 

  14. Hong, C., Sukumaran-Rajam, A., Nisa, I., Singh, K., Sadayappan, P.: Adaptive sparse tiling for sparse matrix multiplication. In: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, PPoPP 2019, pp. 300–314. ACM, New York (2019)

    Google Scholar 

  15. Hu, X., Wang, X., Zhou, L., Luo, Y., Ding, C., Wang, Z.: Kinetic modeling of data eviction in cache. In: 2016 USENIX Annual Technical Conference (USENIX ATC 2016), Denver, CO, pp. 351–364. USENIX Association (2016)

    Google Scholar 

  16. Jacquelin, M., Marchal, L., Robert, Y., Uçar, B.: On optimal tree traversals for sparse matrix factorization. In: IPDPS 2011, pp. 556–567 (2011)

    Google Scholar 

  17. Jin, J., et al.: A data-locality-aware task scheduler for distributed social graph queries. Futur. Gener. Comput. Syst. 93, 1010–1022 (2019)

    Article  Google Scholar 

  18. Kiani, M., Rajabzadeh, A.: Analyzing data locality in GPU kernels using memory footprint analysis. Simul. Model. Pract. Theory 91, 102–122 (2019)

    Article  Google Scholar 

  19. Mayer, R., Mayer, C., Laich, L.: The tensorflow partitioning and scheduling problem: it’s the critical path! In: Proceedings of the 1st Workshop on Distributed Infrastructures for Deep Learning, DIDL 2017, pp. 1–6. ACM, New York (2017)

    Google Scholar 

  20. Naik, N.S., Negi, A., Tapas Bapu, B.R., Anitha, R.: A data locality based scheduler to enhance MapReduce performance in heterogeneous environments. Future Gener. Comput. Syst. 90, 423–434 (2019)

    Article  Google Scholar 

  21. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing System, pp. 849–856 (2002)

    Google Scholar 

  22. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  23. Rogers, S., Tabkhi, H.: Locality aware memory assignment and tiling. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), June 2018

    Google Scholar 

  24. Sethi, R.: Complete register allocation problems. In: Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOC 1973), pp. 182–195 (1973)

    Google Scholar 

  25. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19328-6_1

    Chapter  Google Scholar 

  26. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  27. Xie, B., et al.: CVR: Efficient vectorization of SpMV on x86 processors. In: Proceedings of the 2018 International Symposium on Code Generation and Optimization, CGO 2018, pp. 149–162. ACM (2018)

    Google Scholar 

  28. Yzelman, A.N., Bisseling, R.H.: Two-dimensional cache-oblivious sparse matrix-vector multiplication. Parallel Comput. 37(12), 806–819 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yusuf Özkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Özkaya, M.Y., Benoit, A., Çatalyürek, Ü.V. (2020). Improving Locality-Aware Scheduling with Acyclic Directed Graph Partitioning. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43229-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43228-7

  • Online ISBN: 978-3-030-43229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics