Skip to main content

Ab-initio Functional Decomposition of Kalman Filter: A Feasibility Analysis on Constrained Least Squares Problems

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12044))

  • 607 Accesses

Abstract

The standard formulation of Kalman Filter (KF) becomes computationally intractable for solving large scale state space estimation problems as in ocean/weather forecasting due to matrix storage and inversion requirements. We introduce an innovative mathematical/numerical formulation of KF using Domain Decomposition (DD) approach. The proposed DD approach partitions ab-initio the whole KF computational method giving rise to local KF methods that can be solved independently. We present its feasibility analysis using the constrained least square model underlying variational Data Dssimilation problems. Results confirm that the accuracy of solutions of local KF methods are not impaired by DD approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Let \(A\in \mathbb {R}^{n\times n}\), \(U\in \mathbb {R}^{n\times k}\), \(V\in \mathbb {R}^{k\times n}\), \(R\in \mathbb {R}^{k\times k}\) and \(B=A+URV\). Then, \(B^{-1}=A^{-1}-A^{-1}U(R+VA^{-1}U)^{-1}VA^{-1}\).

References

  1. Antonelli, L., Carracciuolo, L., Ceccarelli, M., D’Amore, L., Murli, A.: Total variation regularization for edge preserving 3D SPECT imaging in high performance computing environments. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2330, pp. 171–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46080-2_18

    Chapter  Google Scholar 

  2. Arcucci, R., D’Amore, L., Pistoia, J., Toumi, R., Murli, A.: On the variational Data Assimilation problem solving and sensitivity analysis. J. Comput. Phys. 335, 311–326 (2017)

    Article  MathSciNet  Google Scholar 

  3. Arcucci, R., D’Amore, L., Carracciuolo, L., Scotti, G., Laccetti, G.: A decomposition of the Tikhonov Regularization functional oriented to exploit hybrid multilevel parallelism. Int. J. Parallel Prog. 45, 1214–1235 (2017). https://doi.org/10.1007/s10766-016-0460-3. ISSN 0885–7458

    Article  Google Scholar 

  4. Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scalable 4D-Var Data Assimilation model. In: Proceedings of the 2015 International Conference on High Performance Computing and Simulation, HPCS 2015, 2 September 2015, 13th International Conference on High Performance Computing and Simulation, HPCS 2015, Amsterdam, Netherlands, 20 July 2015 through 24 July 2015, pp. 589–594 (2015)

    Google Scholar 

  5. Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numerical algorithm for solving Tikhonov Regularization problems. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_5

    Chapter  Google Scholar 

  6. Bertero, M., et al.: MedIGrid: a medical imaging application for computational grids. In: Proceedings International Parallel and Distributed Processing Symposium (2003). https://doi.org/10.1109/IPDPS.2003.1213457

  7. D’Amore, L., Campagna, R., Mele, V., Murli, A., Rizzardi, M.: ReLaTIve. An Ansi C90 software package for the Real Laplace Transform Inversion. Numer. Algorithms 63(1), 187–211 (2013). https://doi.org/10.1007/s11075-012-9636-0

  8. D’Amore, L., Mele, V., Laccetti, G., Murli, A.: Mathematical approach to the performance evaluation of matrix multiply algorithm. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 25–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_3

    Chapter  Google Scholar 

  9. D’Amore, L., Campagna, R., Mele, V., Murli, A.: Algorithm 946. ReLIADiff - a C++ software package for Real Laplace transform inversion based on automatic differentiation. ACM Trans. Math. Softw. 40(4), 31:1–31:20 (2014). article 31. https://doi.org/10.1145/2616971

  10. D’Amore, L., Cacciapuoti, R.: A note on domain decomposition approaches for solving 3D variational data assimilation models. Ricerche mat. (2019). https://doi.org/10.1007/s11587-019-00432-4

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Amore, L., Arcucci, R., Carracciuolo, L., Murli, A.: A scalable approach for variational data assimilation. J. Sci. Comput. 61, 239–257 (2014). https://doi.org/10.1007/s10915-014-9824-2. ISSN 0885–7474

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Amore, L., Campagna, R., Galletti, A., Marcellino, L., Murli, A.: A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis. Inverse Prob. 28(2) (2012)

    Google Scholar 

  13. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel component in a GPU–CUDA environment: a case study with the L-BFGS Harwell routine. Int. J. Comput. Math. 92(1) (2015). https://doi.org/10.1080/00207160.2014.899589

  14. D’Amore, L., Mele, V., Romano, D., Laccetti, G., Romano, D.: A multilevel algebraic approach for performance analysis of parallel algorithms. Comput. Inform. 38(4) (2019). https://doi.org/10.31577/cai_2019_4_817

  15. Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynam. 53, 343–367 (2003)

    Article  Google Scholar 

  16. Gander, M.J.: Schwarz methods over the course of time. ETNA 31, 228–255 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Gander, W.: Least squares with a quadratic constraint. Numer. Math. 36, 291–307 (1980)

    Article  MathSciNet  Google Scholar 

  18. Hannachi, A., Jolliffe, I.T., Stephenson, D.B.: Empirical orthogonal functions and related techniques in atmospheric science: a review. Int. J. Climatol. 1152, 1119–1152 (2007)

    Article  Google Scholar 

  19. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  20. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm. Concur. Comput. Pract. Exp. 22(15), 2053–2072 (2010)

    Google Scholar 

  21. Rozier, D., Birol, F., Cosme, E., Brasseur, P., Brankart, J.M., Verron, J.: A reduced-order Kalman filter for data assimilation in physical oceanography. SIAM Rev. 49(3), 449–465 (2007)

    Article  MathSciNet  Google Scholar 

  22. Sorenson, H.W.: Least square estimation:from Gauss to Kalman. IEEE Spectr. 7, 63–68 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa D’Amore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Amore, L., Cacciapuoti, R., Mele, V. (2020). Ab-initio Functional Decomposition of Kalman Filter: A Feasibility Analysis on Constrained Least Squares Problems. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics