Abstract
The problem of efficient pedestrian simulation, when large-scale environment is considered, poses a great challenge. When the simulation model size exceeds the capabilities of a single computing node or the results are expected quickly, the simulation algorithm has to use many cores and nodes. The problem considered in the presented work is the task of splitting the data-intensive computations with a common data structure into separate computational domains, while preserving the crucial features of the simulation model. We propose a new model created on the basis of some popular pedestrian models, which can be applied in parallel processing. We describe its implementation in a highly scalable simulation framework. Additionally, the preliminary results are presented and outcomes are discussed.
Keywords
- HPC
- Supercomputing
- Pedestrian simulation
- Crowd dynamics
- Proxemics
This is a preview of subscription content, access via your institution.
Buying options





Notes
- 1.
A Scala/Akka distributed simulation framework developed at AGH University of Science and Technology.
- 2.
http://www.cyfronet.krakow.pl/en/.
References
Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)
Bujas, J., Dworak, D., Turek, W., Byrski, A.: High-performance computing framework with desynchronized information propagation for large-scale simulations. J. Comput. Sci. 32, 70–86 (2019). https://doi.org/10.1016/j.jocs.2018.09.004. http://www.sciencedirect.com/science/article/pii/S1877750318303776
Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.: Exploitation of high performance computing in the flame agent-based simulation framework. In: 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems, pp. 538–545. IEEE (2012)
Collier, N., North, M.: Parallel agent-based simulation with repast for high performance computing. Simulation 89(10), 1215–1235 (2013)
Collier, N., Ozik, J., Macal, C.M.: Large-scale agent-based modeling with repast HPC: a case study in parallelizing an agent-based model. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 454–465. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2_37
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282
Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35(1), 169–182 (2003). https://doi.org/10.1146/annurev.fluid.35.101101.161136
Kiran, M., Bicak, M., Maleki-Dizaji, S., Holcombe, M.: Flame: A platform for high performance computing of complex systems, applied for three case studies. Acta Phys. Pol., B 4(2) (2011)
Kłusek, A., Topa, P., Wąs, J., Lubaś, R.: An implementation of the social distances model using multi-GPU systems. Int. J. High Perform. Comput. Appl. 32(4), 482–495 (2018)
Komosinski, M., Ulatowski, S.: Framsticks. In: Komosinski, M., Adamatzky, A. (eds.) Artificial Life Models in Software, pp. 107–148. Springer, London (2009). https://doi.org/10.1007/978-1-84882-285-6_5
Message Passing Interface Forum: MPI: a message-passing interface standard, version 2.2. Specification, September 2009. http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
Porzycki, J., Wąs, J., Hedayatifar, L., Hassanibesheli, F., Kułakowski, K.: Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians. Phys. Rev. E 96, 022307 (2017). https://doi.org/10.1103/PhysRevE.96.022307
Suryanarayanan, V., Theodoropoulos, G., Lees, M.: PDES-MAS: distributed simulation of multi-agent systems. Procedia Comput. Sci. 18, 671–681 (2013)
Turek, W.: Erlang-based desynchronized urban traffic simulation for high-performance computing systems. Future Gener. Comput. Syst. 79, 645–652 (2018). https://doi.org/10.1016/j.future.2017.06.003. http://www.sciencedirect.com/science/article/pii/S0167739X17311810
Wąs, J.: Crowd dynamics modeling in the light of proxemic theories. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artifical Intelligence and Soft Computing, pp. 683–688. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_84
Wąs, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201_57
Wittek, P., Rubio-Campillo, X.: Scalable agent-based modelling with cloud HPC resources for social simulations. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 355–362. IEEE (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Renc, P. et al. (2020). HPC Large-Scale Pedestrian Simulation Based on Proxemics Rules. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-43222-5_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43221-8
Online ISBN: 978-3-030-43222-5
eBook Packages: Computer ScienceComputer Science (R0)