Advertisement

HPC Large-Scale Pedestrian Simulation Based on Proxemics Rules

  • Paweł Renc
  • Maciej BielechEmail author
  • Tomasz Pęcak
  • Piotr Morawiecki
  • Mateusz Paciorek
  • Wojciech Turek
  • Aleksander Byrski
  • Jarosław Wąs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12044)

Abstract

The problem of efficient pedestrian simulation, when large-scale environment is considered, poses a great challenge. When the simulation model size exceeds the capabilities of a single computing node or the results are expected quickly, the simulation algorithm has to use many cores and nodes. The problem considered in the presented work is the task of splitting the data-intensive computations with a common data structure into separate computational domains, while preserving the crucial features of the simulation model. We propose a new model created on the basis of some popular pedestrian models, which can be applied in parallel processing. We describe its implementation in a highly scalable simulation framework. Additionally, the preliminary results are presented and outcomes are discussed.

Keywords

HPC Supercomputing Pedestrian simulation Crowd dynamics Proxemics 

References

  1. 1.
    Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)CrossRefGoogle Scholar
  2. 2.
    Bujas, J., Dworak, D., Turek, W., Byrski, A.: High-performance computing framework with desynchronized information propagation for large-scale simulations. J. Comput. Sci. 32, 70–86 (2019).  https://doi.org/10.1016/j.jocs.2018.09.004. http://www.sciencedirect.com/science/article/pii/S1877750318303776CrossRefGoogle Scholar
  3. 3.
    Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.: Exploitation of high performance computing in the flame agent-based simulation framework. In: 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems, pp. 538–545. IEEE (2012)Google Scholar
  4. 4.
    Collier, N., North, M.: Parallel agent-based simulation with repast for high performance computing. Simulation 89(10), 1215–1235 (2013)CrossRefGoogle Scholar
  5. 5.
    Collier, N., Ozik, J., Macal, C.M.: Large-scale agent-based modeling with repast HPC: a case study in parallelizing an agent-based model. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 454–465. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27308-2_37CrossRefGoogle Scholar
  6. 6.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995).  https://doi.org/10.1103/PhysRevE.51.4282CrossRefGoogle Scholar
  7. 7.
    Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35(1), 169–182 (2003).  https://doi.org/10.1146/annurev.fluid.35.101101.161136MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kiran, M., Bicak, M., Maleki-Dizaji, S., Holcombe, M.: Flame: A platform for high performance computing of complex systems, applied for three case studies. Acta Phys. Pol., B 4(2) (2011) Google Scholar
  9. 9.
    Kłusek, A., Topa, P., Wąs, J., Lubaś, R.: An implementation of the social distances model using multi-GPU systems. Int. J. High Perform. Comput. Appl. 32(4), 482–495 (2018)CrossRefGoogle Scholar
  10. 10.
    Komosinski, M., Ulatowski, S.: Framsticks. In: Komosinski, M., Adamatzky, A. (eds.) Artificial Life Models in Software, pp. 107–148. Springer, London (2009).  https://doi.org/10.1007/978-1-84882-285-6_5CrossRefGoogle Scholar
  11. 11.
    Message Passing Interface Forum: MPI: a message-passing interface standard, version 2.2. Specification, September 2009. http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
  12. 12.
    Porzycki, J., Wąs, J., Hedayatifar, L., Hassanibesheli, F., Kułakowski, K.: Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians. Phys. Rev. E 96, 022307 (2017).  https://doi.org/10.1103/PhysRevE.96.022307CrossRefGoogle Scholar
  13. 13.
    Suryanarayanan, V., Theodoropoulos, G., Lees, M.: PDES-MAS: distributed simulation of multi-agent systems. Procedia Comput. Sci. 18, 671–681 (2013)CrossRefGoogle Scholar
  14. 14.
    Turek, W.: Erlang-based desynchronized urban traffic simulation for high-performance computing systems. Future Gener. Comput. Syst. 79, 645–652 (2018).  https://doi.org/10.1016/j.future.2017.06.003. http://www.sciencedirect.com/science/article/pii/S0167739X17311810CrossRefGoogle Scholar
  15. 15.
    Wąs, J.: Crowd dynamics modeling in the light of proxemic theories. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artifical Intelligence and Soft Computing, pp. 683–688. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13232-2_84CrossRefGoogle Scholar
  16. 16.
    Wąs, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861201_57CrossRefGoogle Scholar
  17. 17.
    Wittek, P., Rubio-Campillo, X.: Scalable agent-based modelling with cloud HPC resources for social simulations. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 355–362. IEEE (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Paweł Renc
    • 1
  • Maciej Bielech
    • 1
    Email author
  • Tomasz Pęcak
    • 1
  • Piotr Morawiecki
    • 1
  • Mateusz Paciorek
    • 1
  • Wojciech Turek
    • 1
  • Aleksander Byrski
    • 1
  • Jarosław Wąs
    • 1
  1. 1.AGH University of Sciences and TechnologyKrakówPoland

Personalised recommendations