Skip to main content

Examining Performance Portability with Kokkos for an Ewald Sum Coulomb Solver

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

We have implemented the computation of Coulomb interactions in particle systems using the performance portable C++ framework Kokkos. Coulomb interactions are evaluated with an Ewald-sum-based solver, where the interactions are split into long- and short-range contributions. The short-range contributions are calculated using pair-wise contributions of particles while long-range interactions are calculated using Fourier sums. We evaluate the performance portability of the implementation on Intel CPUs, including Intel Xeon Phi, and Nvidia GPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://github.com/kokkos/kokkos

  2. https://github.com/LLNL/RAJAPerf

  3. Arnold, A., et al.: Comparison of scalable fast methods for long-range interactions. Phys. Rev. E 88, 063308 (2013)

    Article  Google Scholar 

  4. Beckingsale, D., Hornung, R., Scogland, T., Vargas, A.: Performance portable C++ programming with RAJA. In: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, PPoPP 2019, pp. 455–456. ACM, New York (2019). https://doi.org/10.1145/3293883.3302577

  5. Carter Edwards, H., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.003

    Article  Google Scholar 

  6. Deserno, M., Holm, C.: How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678 (1998)

    Article  Google Scholar 

  7. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369(3), 253–287 (1921). https://doi.org/10.1002/andp.19213690304

    Article  MATH  Google Scholar 

  8. Fincham, D.: Optimisation of the Ewald sum for large systems. Mol. Simul. 13(1), 1–9 (1994). https://doi.org/10.1080/08927029408022180

    Article  Google Scholar 

  9. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  10. Halver, R., Homberg, W., Sutmann, G.: Function portability of molecular dynamics on heterogeneous parallel architectures with OpenCL. J. Supercomput. 74(4), 1522–1533 (2018). https://doi.org/10.1007/s11227-017-2232-2

    Article  Google Scholar 

  11. Intel: Intel® 64 and IA-32 Architectures Optimization Reference Manual, April 2019

    Google Scholar 

  12. JSC: Forschungszentrum Jülich - Jülich Supercomputing Centre (JSC) (2019). https://www.fz-juelich.de/ias/jsc/

  13. Luty, B., Davis, M., Tironi, I., van Gunsteren, W.: A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Mol. Simul. 14, 11–20 (1994)

    Article  Google Scholar 

  14. NVIDIA: CUDA C Programming Guide, March 2019. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  15. Pollock, E.L., Glosli, J.: Comments on P\(^3\)M, FMM, and the Ewald method for large periodic Coulombic systems. Comput. Phys. Commun. 95, 93–110 (1996)

    Article  Google Scholar 

  16. Sutmann, G.: Molecular dynamics - vision and reality. In: Grotendorst, J., Blügel, S., John von Neumann-Institut für Computing (eds.) Computational Nanoscience: Do It Yourself! Winter School, 14–22 February 2006, Forschungszentrum Jülich, Germany; Lecture Notes. No. 31 in NIC Series, NIC-Secretariat, Research Centre Jülich, Jülich (2006). oCLC: 181556319

    Google Scholar 

  17. Top500: TOP500 Supercomputer Sites. https://www.top500.org/

  18. Torrellas, J., Lam, H.S., Hennessy, J.L.: False sharing and spatial locality in multiprocessor caches. IEEE Trans. Comput. 43(6), 651–663 (1994). https://doi.org/10.1109/12.286299

    Article  MATH  Google Scholar 

  19. Toukmaji, A.Y., Board Jr., J.A.: Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73–92 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godehard Sutmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halver, R., Meinke, J.H., Sutmann, G. (2020). Examining Performance Portability with Kokkos for an Ewald Sum Coulomb Solver. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics