Skip to main content

Application of Multiscale Computational Techniques to the Study of Magnetic Nanoparticle Systems

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

We have employed a multiscale modeling approach that combines ab-initio electronic structure calculations with atomic and mesoscopic scale modeling to describe the magnetic behavior of assemblies of magnetic nano-particles (MNPs) with core/surface morphology. Our modeling is based on the calculated atomistic parameters and we rescale them after the reduction of the simulated number of the NPs atomic spins to the minimum necessary to represent their magnetic structure in the assemblies. Monte Carlo simulations are them performed to study their macroscopic magnetic behavior. We apply our model to (a) \(\text {CoFe}_{2}\mathrm{O}_{4}\) NPs coated with two different surfactants and (b) bovine serum albumin-coated \(\text {MnFe}_{2}\text {O}_{4}\) MNPs’ clusters. Our approach overcomes current computational limitations. The numerical results produced are in excellent agreement with the experimental findings illustrating the potentials of our strategy to simulate the magnetic behavior of complex magnetic nanoparticle systems and to optimize their magnetic properties for advanced energy and biotechnology nanomaterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, L., Mendoza-Garcia, A., Li, Q., Sun, S.: Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–10512 (2016). https://doi.org/10.1021/acs.chemrev.5b00687

    Article  Google Scholar 

  2. Noh, S.H., Moon, S.H., Shin, T.H., Lim, Y., Cheon, J.: Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications. Nano Today 13, 61–76 (2017). https://doi.org/10.1016/j.nantod.2017.02.006

    Article  Google Scholar 

  3. Hazra, S., Ghosh, N.N.: Preparation of nanoferrites and their applications. J. Nanosci. Nanotechnol. 14, 1983–2000 (2014). https://doi.org/10.1166/jnn.2014.8745

    Article  Google Scholar 

  4. Reddy, L.H., Arias, J.L., Nicolas, J., Couvreur, P.: Magnetic nanoparticles: design and characerization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012). https://doi.org/10.1021/cr300068p

    Article  Google Scholar 

  5. Scherer, C., Neto, A.M.F.: Ferrofluids?: Properties and applications 35, 718–727 (2005). https://doi.org/10.1590/S0103-97332005000400018

  6. Vasilakaki, M., Ntallis, N., Yaacoub, N., Muscas, G., Peddis, D., Trohidou, K.N.: Optimising the magnetic performance of Co ferrite nanoparticles via organic ligand capping. Nanoscale 10, 21244–21253 (2018). https://doi.org/10.1039/c8nr04566f

    Article  Google Scholar 

  7. Vasilakaki, M., et al.: Monte Carlo study of the superspin glass behavior of interacting ultrasmall ferrimagnetic nanoparticles. Phys. Rev. B. 97, 094413 (2018). https://doi.org/10.1103/PhysRevB.97.094413

    Article  Google Scholar 

  8. Vasilakaki, M., et al.: Effect of Bovine serum albumin mediating clustering on the magnetic behavior of MnFe2O4 nanoparticles. Nanotechnology 31, 25707 (2020). https://doi.org/10.1088/1361-6528/ab4764

    Article  Google Scholar 

  9. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  10. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  11. Malerba, L., et al.: Ab initio calculations and interatomic potentials for iron and iron alloys: achievements within the perfect project. J. Nuclear Mater. 406, 7–18 (2010). https://doi.org/10.1016/j.jnucmat.2010.05.016

    Article  Google Scholar 

  12. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  13. Bercoff, P.G., Bertorello, H.R.: Exchange constants and transfer integrals of spinel ferrites. J. Magn. Magn. Mater. 169, 314–322 (1997). https://doi.org/10.1016/S0304-8853(96)00748-2

    Article  Google Scholar 

  14. Margaris, G., Trohidou, K.N., Nogués, J.: Mesoscopic model for the simulation of large arrays of Bi-magnetic core/shell nanoparticles. Adv. Mater. 24, 4331–4336 (2012). https://doi.org/10.1002/adma.201200615

    Article  Google Scholar 

  15. Binder, K.: Applications of the Monte-Carlo Method in Statistical Physics. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-96788-7

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme: under grant agreement No. 731976 (MAGENTA). The authors acknowledge the computational time granted from the Greek Research & Technology Network (GRNET) in the Greek National HPC facility ARIS (http://hpc.grnet.gr) under project MNBIE (pr005030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalliopi N. Trohidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasilakaki, M., Ntallis, N., Trohidou, K.N. (2020). Application of Multiscale Computational Techniques to the Study of Magnetic Nanoparticle Systems. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics