Abstract
Cerebral palsy (CP) is a neural disorder that greatly affects the musculoskeletal system, but the causes and progression of muscle degeneration are poorly understood. The CP muscle environment is altered compared to typical, particularly with the presence of fibrosis and fewer satellite cells (SCs). Healthy regeneration of muscle requires both SCs—a progenitor cell population for muscle cells—and fibroblasts—the primary instigators of extracellular matrix (ECM) remodeling. SCs and fibroblasts interact, but their dynamics at the muscle level are complex and nonlinear; nevertheless, detailed knowledge of these dynamics is necessary for a thorough understanding of muscle degeneration in CP and as a precursor to the development of novel clinical interventions. In this work, computational agent-based modeling (ABM) was used to investigate muscle regeneration by representing muscle tissue adaptation at the cellular level following injury. We used an ABM to vary SC levels in simulated muscle regeneration, which showed that muscle fiber recovery was impaired when SC levels were decreased, whereas fibroblast activity was enhanced. Complete recovery of damaged muscle tissue was sensitive to the level of injury. Coupling of this ABM with finite element modeling will contribute to the development of a mechano-physiological model to probe muscle injury and regeneration in CP.
Keywords
- Cerebral palsy
- Agent based modeling
- Muscle regeneration
This is a preview of subscription content, access via your institution.
Buying options









References
Graham, H.K., Rosenbaum, P., Paneth, N., Dan, B., Lin, J.P., Damiano, Di.L., Becher, J.G., Gaebler-Spira, D., Colver, A., Reddihough, Di.S., Crompton, K.E., Lieber, R.L.: Cerebral palsy. Nat. Rev. Dis. Prim. 2, 19–20 (2016). https://doi.org/10.1038/nrdp.2015.82
Kinney, M.C., Dayanidhi, S., Dykstra, P.B., McCarthy, J.J., Peterson, C.A., Lieber, R.L.: Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition. Muscle Nerve 55, 384–392 (2017). https://doi.org/10.1002/mus.25227
Fahey, M.C., Maclennan, A.H., Kretzschmar, D., Gecz, J., Kruer, M.C.: The genetic basis of cerebral palsy. Dev. Med. Child Neurol. 59, 462–469 (2017). https://doi.org/10.1111/dmcn.13363
Norton, N.S.: Cerebral palsy. xPharm Compr. Pharmacol. Ref. 1–5 (2007). https://doi.org/10.1016/b978-008055232-3.60641-5
Lieber, R.L., Runesson, E., Einarsson, F., Fridén, J.: Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve 28, 464–471 (2003). https://doi.org/10.1002/mus.10446
Kerr Graham, H., Selber, P.: Musculoskeletal aspects of cerebral palsy. J. Bone Jt. Surg. 85, 157–166 (2003). https://doi.org/10.1302/0301-620X.85B2.14066
Friden, J., Lieber, R.L.: Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve. 26, 157–164 (2003). https://doi.org/10.1002/mus.10247
Mathewson, M.A., Lieber, R.L.: Pathophysiology of muscle contractures in cerebral palsy. Phys. Med. Rehabil. Clin. N. Am. 26, 57–67 (2015). https://doi.org/10.1016/j.pmr.2014.09.005
Smith, L.R., Lee, K.S., Ward, S.R., Chambers, H.G., Lieber, R.L.: Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J. Physiol. 589, 2625–2639 (2011). https://doi.org/10.1113/jphysiol.2010.203364
Willerslev-Olsen, M., Choe Lund, M., Lorentzen, J., Barber, L., Kofoed-Hansen, M., Nielsen, J.B.: Impaired muscle growth precedes development of increased stiffness of the triceps surae musculotendinous unit in children with cerebral palsy. Dev. Med. Child Neurol. 60, 672–679 (2018). https://doi.org/10.1111/dmcn.13729
Proske, U., Morgan, D.L.: Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 537, 333–345 (2001)
Chargé, S.B.P., Rudnicki, M.A.: Cellular and molecular regulation of muscle regeneration. 209–238 (2009). https://doi.org/10.1152/physrev.00019.2003
Sciorati, C., Rigamonti, E., Manfredi, A.A., Rovere-Querini, P.: Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ. 23, 927–937 (2016). https://doi.org/10.1038/cdd.2015.171
Tidball, J.G., Villalta, S.A.: Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1173–R1187 (2010). https://doi.org/10.1152/ajpregu.00735.2009
Ten Broek, R.W., Grefte, S., Von Den Hoff, J.W.: Regulatory factors and cell populations involved in skeletal muscle regeneration. J. Cell. Physiol. 224, 7–16 (2010). https://doi.org/10.1002/jcp.22127
Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., Gherardi, R.K., Chazaud, B.: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007). https://doi.org/10.1084/jem.20070075
Järvinen, T.A., Kääriäinen, M., Äärimaa, V., Järvinen, M., Kalimo, H.: Skeletal muscle repair after exercise-induced injury. In: Schiaffino, S., Partridge, T. (eds.) Skeletal Muscle Repair and Regeneration, pp. 217–242. Springer, Heidelberg (2008)
Lu, P., Takai, K., Weaver, V.M., Werb, Z.: Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058–a005058 (2011). https://doi.org/10.1101/cshperspect.a005058
Lepper, C., Conway, S.J., Fan, C.M.: Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460, 627–631 (2009). https://doi.org/10.1038/nature08209
Yin, H., Price, F., Rudnicki, M.A.: Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013). https://doi.org/10.1152/physrev.00043.2011
Wang, Y.X., Rudnicki, M.A.: Satellite cells, the engines of muscle repair. Nat. Rev. Mol. Cell Biol. 13, 127–133 (2012). https://doi.org/10.1038/nrm3265
Snijders, T., Nederveen, J.P., McKay, B.R., Joanisse, S., Verdijk, L.B., van Loon, L.J.C., Parise, G.: Satellite cells in human skeletal muscle plasticity. Front. Physiol. 6, 283 (2015). https://doi.org/10.3389/fphys.2015.00283
Charge, S.B.P., Rudnicki, M.A.: Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209 (2004). https://doi.org/10.1152/physrev.00019.2003
Ambrosio, F., Kadi, F., Lexell, J., Kelley Fitzgerald, G., Boninger, M.L., Huard, J.: The effect of muscle loading on skeletal muscle regenerative potential: an update of current research findings relating to aging and neuromuscular pathology. Am. J. Phys. Med. Rehabil. 88, 145–155 (2009). https://doi.org/10.1097/PHM.0b013e3181951fc5
Chapman, M.A., Meza, R., Lieber, R.L.: Skeletal muscle fibroblasts in health and disease. Differentiation 92, 108–115 (2016). https://doi.org/10.1016/j.diff.2016.05.007
Mendias, C.L.: Fibroblasts take the centre stage in human skeletal muscle regeneration. J. Physiol. 595, 5005 (2017). https://doi.org/10.1113/JP274403
Mackey, A.L., Magnan, M., Chazaud, B., Kjaer, M.: Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J. Physiol. 595, 5115–5127 (2017). https://doi.org/10.1113/JP273997
Smith, L.R., Pontén, E., Hedström, Y., Ward, S.R., Chambers, H.G., Subramaniam, S., Lieber, R.L.: Novel transcriptional profile in wrist muscles from cerebral palsy patients. BMC Med. Genom. 2, 44 (2009). https://doi.org/10.1186/1755-8794-2-44
De Bruin, M., Smeulders, M.J., Kreulen, M., Huijing, P.A., Jaspers, R.T.: Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS One. 9 (2014). https://doi.org/10.1371/journal.pone.0101038
Booth, C.M., Cortina-Borja, M.J.F., Theologis, T.N.: Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev. Med. Child Neurol. 43, 314–320 (2001). https://doi.org/10.1111/j.1469-8749.2001.tb00211.x
Foran, J.R.H., Steinman, S., Barash, I., Chambers, H.G., Lieber, R.L.: Structural and mechanical alterations in spastic skeletal muscle. Dev. Med. Child Neurol. 47, 713–717 (2005). https://doi.org/10.1017/S0012162205001465
Smith, L.R., Chambers, H.G., Lieber, R.L.: Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev. Med. Child Neurol. 55, 264–270 (2013). https://doi.org/10.1111/dmcn.12027
Wilensky, U., Rand, B.: An Introduction to Agent-based Modelling: Modelling Natural, Social and Engineered Complex Systems with NetLogo. The MIT Press, Cambridge (2015)
Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.P.: Agent Based Modelling and Simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017). https://doi.org/10.1016/j.cosrev.2017.03.001
Borgiani, E., Duda, G.N., Checa, S.: Multiscale modeling of bone healing: toward a systems biology approach. Front. Physiol. 8, 287 (2017). https://doi.org/10.3389/fphys.2017.00287
Rouillard, A.D., Holmes, J.W.: Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction. Prog. Biophys. Mol. Biol. 115, 235–243 (2014). https://doi.org/10.1016/j.pbiomolbio.2014.06.010
Zhuan, X., Luo, X., Gao, H., Ogden, R.W.: Coupled agent-based and hyperelastic modelling of the left ventricle post-myocardial infarction. Int. J. Numer. Method. Biomed. Eng. 35, e3155 (2018). https://doi.org/10.1002/cnm.3155
Virgilio, K.M., Martin, K.S., Peirce, S.M., Blemker, S.S.: Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. J. Appl. Physiol. 125, 1424–1439 (2018). https://doi.org/10.1152/japplphysiol.00379.2018
Martin, K.S., Blemker, S.S., Peirce, S.M.: Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J. Appl. Physiol. 118, 1299–1309 (2015). https://doi.org/10.1152/japplphysiol.01150.2014
Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform. 8, 245–257 (2007). https://doi.org/10.1093/bib/bbm024
Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4, 151–162 (2010). https://doi.org/10.1057/jos.2010.3
Gorochowski, T.E.: Agent-based modelling in synthetic biology. Essays Biochem. 60, 325–336 (2016). https://doi.org/10.1042/EBC20160037
An, G.: Integrating physiology across scales and formalizing hypothesis exploration with agent-based modeling. J. Appl. Physiol. 118, 1191–1192 (2015). https://doi.org/10.1152/japplphysiol.00243.2015
Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. 99, 7280–7287 (2002). https://doi.org/10.1073/pnas.082080899
Mackey, A.L., Kjaer, M.: The breaking and making of healthy adult human skeletal muscle in vivo. Skelet. Muscle 7, 1–18 (2017). https://doi.org/10.1186/s13395-017-0142-x
Miller, K.J., Thaloor, D., Matteson, S., Pavlath, G.K.: Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am. J. Physiol. Cell Physiol. 278, C174–C181 (2000). https://doi.org/10.1152/ajpcell.2000.278.1.C174
Siegel, A.L., Kuhlmann, P.K., Cornelison, D.D.W.: Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skelet. Muscle 1, 1–7 (2011). https://doi.org/10.1186/2044-5040-1-7
Pawlikowski, B., Vogler, T.O., Gadek, K., Olwin, B.B.: Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev. Dyn. 246, 359–367 (2017). https://doi.org/10.1002/dvdy.24495
Rangel-Huerta, E., Maldonado, E.: Transit-amplifying cells in the fast lane from stem cells towards differentiation. Stem Cells Int. 2017, 1–10 (2017). https://doi.org/10.1155/2017/7602951
Kuang, S., Gillespie, M.A., Rudnicki, M.A.: Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2, 22–31 (2008). https://doi.org/10.1016/j.stem.2007.12.012
Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A., Kardon, G.: Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637 (2011). https://doi.org/10.1242/dev.064162
Delaney, K., Kasprzycka, P., Ciemerych, M.A., Zimowska, M.: The role of TGF-β1 during skeletal muscle regeneration. Cell Biol. Int. 41, 706–715 (2017). https://doi.org/10.1002/cbin.10725
Tipping, P.G., Hancock, W.W.: Production of tumor necrosis factor and interleukin-1 by macrophages from human atheromatous plaques. Am. J. Pathol. 142, 1721–1728 (1993)
Vignola, A.M., Chanez, P., Chiappara, G., Merendino, A., Zinnanti, E., Bousquet, J., Bellia, V., Bonsignore, G.: Release of transforming growth factor-beta (TGF-β) and fibronectin by alveolar macrophages in airway diseases. Clin. Exp. Immunol. 106, 114–119 (1996). https://doi.org/10.1046/j.1365-2249.1996.d01-811.x
McCarthy, J.J., Mula, J., Miyazaki, M., Erfani, R., Garrison, K., Farooqui, A.B., Srikuea, R., Lawson, B.A., Grimes, B., Keller, C., Van Zant, G., Campbell, K.S., Esser, K.A., Dupont-Versteegden, E.E., Peterson, C.A.: Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138, 3657–3666 (2011). https://doi.org/10.1242/dev.068858
Dayanidhi, S., Lieber, R.L.: Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 48, 153–154 (2013). https://doi.org/10.1002/mus.23878
Mockford, M., Caulton, J.M.: The pathophysiological basis of weakness in children with cerebral palsy. Pediatr. Phys. Ther. 22, 222–233 (2010). https://doi.org/10.1097/pep.0b013e3181dbaf96
Cholok, D., Lee, E., Lisiecki, J., Agarwal, S., Loder, S., Ranganathan, K., Qureshi, A.T., Davis, T.A., Levi, B.: Traumatic muscle fibrosis: from pathway to prevention. J. Trauma Acute Care Surg. 82, 174–184 (2017). https://doi.org/10.1097/TA.0000000000001290
Novak, M.L., Koh, T.J.: Phenotypic transitions of macrophages orchestrate tissue repair. Am. J. Pathol. 183, 1352–1363 (2013). https://doi.org/10.1016/j.ajpath.2013.06.034
Wynn, T.A., Vannella, K.M.: Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016). https://doi.org/10.1016/j.immuni.2016.02.015
Kirk, S., Oldham, J., Kambadur, R., Sharma, M., Dobbie, P., Bass, J.: Myostatin regulation during skeletal muscle regeneration. J. Cell. Physiol. 184, 356–363 (2000). https://doi.org/10.1002/1097-4652(200009)184:3%3c356:AID-JCP10%3e3.0.CO;2-R
Goetsch, S.C., Hawke, T.J., Gallardo, T.D., Richardson, J.A., Garry, D.J.: Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol. Genomics 14, 261–271 (2015). https://doi.org/10.1152/physiolgenomics.00056.2003
Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38, 657–665 (2005). https://doi.org/10.1016/j.jbiomech.2004.04.009
Sharafi, B., Blemker, S.S.: A mathematical model of force transmission from intrafascicularly terminating muscle fibers. J. Biomech. 44, 2031–2039 (2011). https://doi.org/10.1016/j.jbiomech.2011.04.038
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Khuu, S., Virgilio, K.M., Fernandez, J.W., Handsfield, G.G. (2020). Mechano-Physiological Modeling to Probe the Role of Satellite Cells and Fibroblasts in Cerebral Palsy Muscle Degeneration. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-43195-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43194-5
Online ISBN: 978-3-030-43195-2
eBook Packages: EngineeringEngineering (R0)