Skip to main content

Comprehensive LU Factors of Polynomial Matrices

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11989)

Abstract

The comprehensive LU decomposition of a parametric matrix consists of a case analysis of the LU factors for each specialization of the parameters. Special cases can be discontinuous with respect to the parameters, the discontinuities being triggered by zero pivots encountered during factorization. For polynomial matrices, we describe an implementation of comprehensive LU decomposition in Maple, using the RegularChains package.

Keywords

  • Parametric linear algebra
  • LU decomposition
  • Regular chains

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Corless, R.M., Jeffrey, D.J.: Well... it isn’t quite that simple. SIGSAM Bull. 26(3), 2–6 (1992)

    CrossRef  Google Scholar 

  2. Kalkbrener, M.: Three Contributions to Elimination Theory. Johannes Kepler University, Linz (1991)

    MATH  Google Scholar 

  3. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comp. 28(1–2), 105–124 (1999)

    CrossRef  MathSciNet  Google Scholar 

  4. Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algorithm applied to automated reasoning. International Atomic Energy Agency, IC/89/263, Miramare, Trieste, Italy (1991)

    Google Scholar 

  5. Corless, R.M., Jeffrey, D.J.: The Turing factorization of a rectangular matrix. SIGSAM Bull. 31(3), 20–30 (1997)

    CrossRef  Google Scholar 

  6. Weispfenning, V.: Comprehensive grobner bases. J. Symbolic Comput. 14, 1–29 (1992)

    CrossRef  MathSciNet  Google Scholar 

  7. Reid, G.: Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Eur. J. Appl. Math. 2, 293–318 (1991)

    CrossRef  MathSciNet  Google Scholar 

  8. Jeffrey, D.J., Corless R.M.: Linear algebra in Maple. In: Hogben, L. (ed) Chapter 89 in the CRC Handbook of Linear Algebra, 2nd ed. Chapman & Hall/CRC (2013)

    Google Scholar 

  9. Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75187-8_7

    CrossRef  Google Scholar 

  10. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

    CrossRef  MathSciNet  Google Scholar 

  11. Boulier, F., Lemaire, F., Moreno Maza, M.: Well Known Theorems on Triangular Systems and the D5 Principle. In: Dumas, J.-G. et al. (eds.) Proceedings of Transgressive Computing 2006, Granada, Spain (2006)

    Google Scholar 

  12. Chen, C., et al.: Solving semi-algebraic systems with the RegularChains library in Maple. In: Raschau, S. (ed.) Proceedings of the Fourth International Conference on Mathematical Aspects of Computer Science and Information Sciences (MACIS 2011), pp. 38–51 (2011)

    Google Scholar 

  13. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple 10. In: Kotsireas, I.S. (ed.) Proceedings of Maple Summer Conference 2005, Waterloo, Canada (2005)

    Google Scholar 

  14. Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comp. 13, 353–394 (1992)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Jeffrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camargos Couto, A.C., Moreno Maza, M., Linder, D., Jeffrey, D.J., Corless, R.M. (2020). Comprehensive LU Factors of Polynomial Matrices. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)