Abstract
The comprehensive LU decomposition of a parametric matrix consists of a case analysis of the LU factors for each specialization of the parameters. Special cases can be discontinuous with respect to the parameters, the discontinuities being triggered by zero pivots encountered during factorization. For polynomial matrices, we describe an implementation of comprehensive LU decomposition in Maple, using the RegularChains package.
Keywords
- Parametric linear algebra
- LU decomposition
- Regular chains
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Corless, R.M., Jeffrey, D.J.: Well... it isn’t quite that simple. SIGSAM Bull. 26(3), 2–6 (1992)
Kalkbrener, M.: Three Contributions to Elimination Theory. Johannes Kepler University, Linz (1991)
Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comp. 28(1–2), 105–124 (1999)
Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algorithm applied to automated reasoning. International Atomic Energy Agency, IC/89/263, Miramare, Trieste, Italy (1991)
Corless, R.M., Jeffrey, D.J.: The Turing factorization of a rectangular matrix. SIGSAM Bull. 31(3), 20–30 (1997)
Weispfenning, V.: Comprehensive grobner bases. J. Symbolic Comput. 14, 1–29 (1992)
Reid, G.: Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Eur. J. Appl. Math. 2, 293–318 (1991)
Jeffrey, D.J., Corless R.M.: Linear algebra in Maple. In: Hogben, L. (ed) Chapter 89 in the CRC Handbook of Linear Algebra, 2nd ed. Chapman & Hall/CRC (2013)
Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75187-8_7
Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)
Boulier, F., Lemaire, F., Moreno Maza, M.: Well Known Theorems on Triangular Systems and the D5 Principle. In: Dumas, J.-G. et al. (eds.) Proceedings of Transgressive Computing 2006, Granada, Spain (2006)
Chen, C., et al.: Solving semi-algebraic systems with the RegularChains library in Maple. In: Raschau, S. (ed.) Proceedings of the Fourth International Conference on Mathematical Aspects of Computer Science and Information Sciences (MACIS 2011), pp. 38–51 (2011)
Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple 10. In: Kotsireas, I.S. (ed.) Proceedings of Maple Summer Conference 2005, Waterloo, Canada (2005)
Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comp. 13, 353–394 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Camargos Couto, A.C., Moreno Maza, M., Linder, D., Jeffrey, D.J., Corless, R.M. (2020). Comprehensive LU Factors of Polynomial Matrices. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-43120-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43119-8
Online ISBN: 978-3-030-43120-4
eBook Packages: Computer ScienceComputer Science (R0)