Skip to main content

Iron in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1259))

Abstract

Cancer metabolism is a well-known target of cancer therapeutics. Classically, cancer metabolism has been studied in terms of the dependence of cancer cells on crucial metabolites, such as glucose and glutamine. But, the accumulating data show that iron metabolism in tumor microenvironment is also an important factor in preserving the survival of cancer cells. Cancer cells have a distinct phenotype of iron metabolism, which secures the much-needed iron for these metabolically active cells. In order to use this iron efficiently, cancer cells need to increase their iron supply and decrease iron loss. As recent research suggests, this is not only done by modifying the expression of iron-related proteins in cancer cells, but also by interaction of cancer cells with other cells from the tumor milieu. Tumor microenvironment is a dynamic environment characterized with intricate relationship between cancer cells, tumor-associated macrophages, fibroblasts, and other cells. Some of the mechanistic aspects of this relationship have been elucidated, while others are yet to be identified. In any case, identifying the details of the iron phenotype of the cells in tumor microenvironment presents with a new therapeutic opportunity to treat this deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DelNero P, Hopkins BD, Cantley LC, Fischbach C (2018) Cancer metabolism gets physical. Sci Transl Med 10:eaaq1011

    PubMed  PubMed Central  Google Scholar 

  2. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM (2018) Iron and Cancer. Annu Rev Nutr 38:97–125

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV (2016) Iron and cancer: recent insights. Ann N Y Acad Sci 1368:149–161

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S et al (2018) Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 14:100–115

    CAS  PubMed  Google Scholar 

  5. Sánchez M, Sabio L, Gálvez N, Capdevila M, Dominguez-Vera JM (2017) Iron chemistry at the service of life. IUBMB Life 69:382–388

    PubMed  Google Scholar 

  6. Ebina Y, Okada S, Hamazaki S, Ogino F, Li JL, Midorikawa O (1986) Nephrotoxicity and renal cell carcinoma after use of iron- and aluminum-nitrilotriacetate complexes in rats. J Natl Cancer Inst 76:107–113

    CAS  PubMed  Google Scholar 

  7. Akatsuka S, Yamashita Y, Ohara H, Liu Y-T, Izumiya M, Abe K et al (2012) Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS One 7:e43403

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang F, Wang W, Tsuji Y, Torti SV, Torti FM (2008) Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J Biol Chem 283:33911–33918

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chanvorachote P, Luanpitpong S (2016) Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol 310:C728–C739

    PubMed  Google Scholar 

  10. Vela D, Vela-Gaxha Z (2018) Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med 50:e436

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Straud S, Zubovych I, de Brabander JK, Roth MG (2010) Inhibition of iron uptake is responsible for differential sensitivity to V-ATPase inhibitors in several cancer cell lines. PLoS One 5:e11629

    PubMed  PubMed Central  Google Scholar 

  12. Miles AL, Burr SP, Grice GL, Nathan JA (2017) The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels. elife 6:e22693

    PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Yu L, Ding J, Chen Y (2019) Iron metabolism in cancer. Int J Mol Sci 20:95

    Google Scholar 

  14. Ornstein DL, Zacharski LR (2007) Iron stimulates urokinase plasminogen activator expression and activates NF-kappa B in human prostate cancer cells. Nutr Cancer 58:115–126

    CAS  PubMed  Google Scholar 

  15. Wang W, Deng Z, Hatcher H, Miller LD, Di X, Tesfay L et al (2014) IRP2 regulates breast tumor growth. Cancer Res 74:497–507

    PubMed  Google Scholar 

  16. Babu KR, Muckenthaler MU (2019) miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep 9:1518

    PubMed  PubMed Central  Google Scholar 

  17. Johnson IRD, Parkinson-Lawrence EJ, Shandala T, Weigert R, Butler LM, Brooks DA (2014) Altered endosome biogenesis in prostate cancer has biomarker potential. Mol Cancer Res 12:1851–1862

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang B, Zhang J, Song F, Tian M, Shi B, Jiang H et al (2016) EGFR regulates iron homeostasis to promote cancer growth through redistribution of transferrin receptor 1. Cancer Lett 381:331–340

    CAS  PubMed  Google Scholar 

  19. Kovar J, Naumann PW, Stewart BC, Kemp JD (1995) Differing sensitivity of non-hematapoietic human tumors to synergistic anti-transferrin receptor monoclonal antibodies and deferoxamine in vitro. Pathobiology 63:65–70

    CAS  PubMed  Google Scholar 

  20. Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D et al (2016) Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab 24:447–461

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomes IM, Maia CJ, Santos CR (2012) STEAP proteins: from structure to applications in cancer therapy. Mol Cancer Res 10:573–587

    CAS  PubMed  Google Scholar 

  22. Jin Y, Wang L, Qu S, Sheng X, Kristian A, Mælandsmo GM et al (2015) STAMP 2 increases oxidative stress and is critical for prostate cancer. EMBO Mol Med 7:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Whitton B, Okamoto H, Packham G, Crabb SJ (2018) Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med 7:3800–3811

    PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Hua L, Yan D, Zhao F, Liu J, Zhou H et al (2016) Overexpression of PCBP2 contributes to poor prognosis and enhanced cell growth in human hepatocellular carcinoma. Oncol Rep 36:3456–3464

    CAS  PubMed  Google Scholar 

  25. Li F, Bullough KZ, Vashisht AA, Wohlschlegel JA, Philpott CC (2016) Poly(rC)-binding protein 2 regulates hippo signaling to control growth in breast epithelial cells. Mol Cell Biol 36:2121–2131

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen C, Lei J, Zheng Q, Tan S, Ding K, Yu C (2018) Poly(rC) binding protein 2 (PCBP2) promotes the viability of human gastric cancer cells by regulating CDK2. FEBS Open Bio 8:764–773

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng Z, Manz DH, Torti SV, Torti FM (2017) Iron-responsive element-binding protein 2 plays an essential role in regulating prostate cancer cell growth. Oncotarget 8:82231–82243

    PubMed  PubMed Central  Google Scholar 

  28. Khiroya H, Moore JS, Ahmad N, Kay J, Woolnough K, Langman G et al (2017) IRP2 as a potential modulator of cell proliferation, apoptosis and prognosis in nonsmall cell lung cancer. Eur Respir J 49:1600711

    PubMed  Google Scholar 

  29. Horniblow RD, Bedford M, Hollingworth R, Evans S, Sutton E, Lal N et al (2017) BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis. Cancer Sci 108:1135–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ward DM, Kaplan J (1823) Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta, Mol Cell Res 2012:1426–1433

    Google Scholar 

  31. Pinnix ZK, Miller LD, Wang W, D’Agostino R, Kute T, Willingham MC et al (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2:43ra56

    PubMed  PubMed Central  Google Scholar 

  32. Deng Z, Manz DH, Torti SV, Torti FM (2019) Effects of ferroportin-mediated iron depletion in cells representative of different histological subtypes of prostate cancer. Antioxid Redox Signal 30:1043–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang S, Chen Y, Guo W, Yuan L, Zhang D, Xu Y et al (2014) Disordered hepcidin-ferroportin signaling promotes breast cancer growth. Cell Signal 26:2539–2550

    CAS  PubMed  Google Scholar 

  34. Gu Z, Wang H, Xia J, Yang Y, Jin Z, Xu H et al (2015) Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res 75:2211–2221

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Porporato PE, Filigheddu N, Pedro JMBS, Kroemer G, Galluzzi L (2018) Mitochondrial metabolism and cancer. Cell Res 28:265–280

    CAS  PubMed  Google Scholar 

  36. Vela D (2019) Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiol 228:e13324. https://doi.org/10.1111/apha.13324

    Article  CAS  Google Scholar 

  37. Fryknäs M, Zhang X, Bremberg U, Senkowski W, Olofsson MH, Brandt P et al (2016) Iron chelators target both proliferating and quiescent cancer cells. Sci Rep 6:38343

    PubMed  PubMed Central  Google Scholar 

  38. Sandoval-Acuña C, Tomkova V, Cardenas NT, Neuzil J, Repkova K, Stursa J et al (2018) Mitochondrial iron chelation as a novel anti-cancer strategy. Free Radic Biol Med 120(Supp. 1):S61

    Google Scholar 

  39. Wu KJ, Polack A, Dalla-Favera R (1999) Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283:676–679

    CAS  PubMed  Google Scholar 

  40. Tsuji Y, Kwak E, Saika T, Torti SV, Torti FM (1993) Preferential repression of the H subunit of ferritin by adenovirus E1A in NIH-3T3 mouse fibroblasts. J Biol Chem 268:7270–7275

    CAS  PubMed  Google Scholar 

  41. Ozaki T, Nakagawara A (2011) Role of p53 in cell death and human cancers. Cancers 3:994–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang X, Zhang C, Qi S, Guo S, Chen Y, Du E et al (2016) Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress. Oncotarget 7:84893–84906

    PubMed  PubMed Central  Google Scholar 

  43. Li JL, Okada S, Hamazaki S, Ebina Y, Midorikawa O (1987) Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate. Cancer Res 47:1867–1869

    CAS  PubMed  Google Scholar 

  44. Vela D (2018) Iron metabolism in prostate cancer; from basic science to new therapeutic strategies. Front Oncol 8:547

    PubMed  PubMed Central  Google Scholar 

  45. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76

    PubMed  PubMed Central  Google Scholar 

  46. Gollapudi K, Galet C, Grogan T, Zhang H, Said JW, Huang J et al (2013) Association between tumor-associated macrophage infiltration, high grade prostate cancer, and biochemical recurrence after radical prostatectomy. Am J Cancer Res 3:523–529

    PubMed  PubMed Central  Google Scholar 

  47. Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M et al (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40:824–835

    CAS  PubMed  Google Scholar 

  48. Jung M, Mertens C, Bauer R, Rehwald C, Brüne B (2017) Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res 120:146–156

    CAS  PubMed  Google Scholar 

  49. Mertens C, Mora J, Ören B, Grein S, Winslow S, Scholich K et al (2018) Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. Onco Targets Ther 7:e1408751

    Google Scholar 

  50. Jung M, Ören B, Mora J, Mertens C, Dziumbla S, Popp R et al (2016) Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine-1-phosphate promotes lymphangiogenesis and tumor metastasis. Sci Signal 9:ra64

    PubMed  Google Scholar 

  51. Mertens C, Akam EA, Rehwald C, Brüne B, Tomat E, Jung M (2016) Intracellular iron chelation modulates the macrophage iron phenotype with consequences on tumor progression. PLoS One 11:e0166164

    PubMed  PubMed Central  Google Scholar 

  52. Prill S, Rebstock J, Tennemann A, Körfer J, Sönnichsen R, Thieme R et al (2019) Tumor-associated macrophages and individual chemo-susceptibility are influenced by iron chelation in human slice cultures of gastric cancer. Oncotarget 10:4731–4742

    PubMed  PubMed Central  Google Scholar 

  53. Leftin A, Ben-Chetrit N, Joyce JA, Koutcher JA (2019) Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy. Sci Rep 9:857

    PubMed  PubMed Central  Google Scholar 

  54. Recalcati S, Gammella E, Cairo G (2019) Dysregulation of iron metabolism in cancer stem cells. Free Radic Biol Med 133:216–220

    CAS  PubMed  Google Scholar 

  55. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G et al (2017) Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36:4089–4099

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanojia D, Zhou W, Zhang J, Jie C, Lo PK, Wang Q et al (2012) Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics 12:3407–3415

    CAS  PubMed  Google Scholar 

  57. Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK, Hale JS et al (2015) Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 28:441–455

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ninomiya T, Ohara T, Noma K, Katsura Y, Katsube R, Kashima H et al (2017) Iron depletion is a novel therapeutic strategy to target cancer stem cells. Oncotarget 8:98405–98416

    PubMed  PubMed Central  Google Scholar 

  59. Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E et al (2017) Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 8:6376–6398

    PubMed  Google Scholar 

  60. El Hout M, Dos Santos L, Hamaï A, Mehrpour M (2018) A promising new approach to cancer therapy: targeting iron metabolism in cancer stem cells. Semin Cancer Biol 53:125–138

    PubMed  Google Scholar 

  61. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18:128–134

    CAS  PubMed  Google Scholar 

  62. Liu W, Xing F, Iiizumi-Gairani M, Okuda H, Watabe M, Pai SK et al (2012) N-myc downstream regulated gene 1 modulates Wnt-β-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol Med 4:93–108

    PubMed  PubMed Central  Google Scholar 

  63. Shan Z, Wei Z, Shaikh ZA (2018) Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells. Toxicol Appl Pharmacol 356:36–43

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL (2019) Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 16:282–295

    PubMed  Google Scholar 

  65. Sandberg TP, Stuart MPME, Oosting J, Tollenaar RAEM, Sier CFM, Mesker WE (2019) Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer. BMC Cancer 19:284

    PubMed  PubMed Central  Google Scholar 

  66. Ippolito L, Morandi A, Taddei ML, Parri M, Comito G, Iscaro A et al (2019) Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene 38:5339–5355

    CAS  PubMed  Google Scholar 

  67. Blanchette-Farra N, Kita D, Konstorum A, Tesfay L, Lemler D, Hegde P et al (2018) Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer. Oncogene 37:4013–4032

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee S, Schmitt CA (2019) The dynamic nature of senescence in cancer. Nat Cell Biol 21:94–101

    CAS  PubMed  Google Scholar 

  69. Chen T, Yang P, Wang H, He ZY (2017) Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells. Onco Targets Ther 10:483–491

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiao Y, Wilkinson J IV, Christine Pietsch E, Buss JL, Wang W, Planalp R et al (2006) Iron chelation in the biological activity of curcumin. Free Radic Biol Med 40:1152–1160

    CAS  PubMed  Google Scholar 

  71. Hassannia B, Vandenabeele P, Vanden BT (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35:830–849

    CAS  PubMed  Google Scholar 

  72. Dixon SJ, Stockwell BR (2019) The hallmarks of ferroptosis. Annu Rev Cancer Biol 3:35–54

    Google Scholar 

  73. Ma S, Henson ES, Chen Y, Gibson SB (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:e2307

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Geng N, Shi B-J, Li S-L, Zhong Z-Y, Li Y-C, Xua W-L et al (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci 22:3826–3836

    CAS  PubMed  Google Scholar 

  75. Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J et al (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9:1025–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sui S, Zhang J, Xu S, Wang Q, Wang P, Pang D (2019) Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis 10:331. https://doi.org/10.1038/s41419-019-1564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun Y, Li C, Feng J, Li Y, Zhai X, Zhang L et al (2019) Ferritinophagic flux activation in CT26 cells contributed to EMT inhibition induced by a novel iron chelator, DpdtpA. Oxid Med Cell Longev 2019:1–14

    Google Scholar 

  78. Tury S, Assayag F, Bonin F, Chateau-Joubert S, Servely JL, Vacher S et al (2018) The iron chelator deferasirox synergises with chemotherapy to treat triple-negative breast cancers. J Pathol 246:103–114

    CAS  PubMed  Google Scholar 

  79. Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D’Agostino R et al (2011) An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res 71:6728–6737

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Toshiyama R, Konno M, Eguchi H, Asai A, Noda T, Koseki J et al (2018) Association of iron metabolic enzyme hepcidin expression levels with the prognosis of patients with pancreatic cancer. Oncol Lett 15:8125–8133

    PubMed  PubMed Central  Google Scholar 

  81. Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR (2018) Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 13:4727–4745

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Camp ER, Wang C, Little EC, Watson PM, Pirollo KF, Rait A et al (2013) Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther 20:222–228

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M et al (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. In: Molecular Therapy, vol 21. Nature Publishing Group, New York, pp 1096–1103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driton Vela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vela, D. (2020). Iron in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-43093-1_3

Download citation

Publish with us

Policies and ethics