Skip to main content

Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1259))

Abstract

Cancer remains a major and leading health problem worldwide. Lack of early diagnosis, chemoresistance, and recurrence of cancer means vast research and development are required in this area. The complexity of the tumor microenvironment in the biological milieu poses greater challenges in having safer, selective, and targeted therapies. Existing strategies such as chemotherapy, radiotherapy, and antiangiogenic therapies moderately improve progression-free survival; however, they come with side effects that reduce quality of life. Thus, targeting potential candidates in the microenvironment, such as extracellular cathepsin D (CathD) which has been known to play major pro-tumorigenic roles in breast and ovarian cancers, could be a breakthrough in cancer treatment, specially using novel treatment modalities such as immunotherapy and nanotechnology-based therapy. This chapter discusses CathD as a pro-cancerous, more specifically a proangiogenic factor, that acts bi-functionally in the tumor microenvironment, and possible ways of targeting the protein therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45(4):353–361. https://doi.org/10.1038/ng.2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eccles SA, Aboagye EO, Ali S, Anderson AS, Armes J, Berditchevski F et al (2013) Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res 15(5):R92. https://doi.org/10.1186/bcr3493

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17(10):1315–1319. https://doi.org/10.1038/nm.2472

    Article  CAS  PubMed  Google Scholar 

  4. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016) Current challenges in cancer treatment. Clin Ther 38(7):1551–1566. https://doi.org/10.1016/j.clinthera.2016.03.026

    Article  PubMed  Google Scholar 

  5. Raave R, van Kuppevelt TH, Daamen WF (2018) Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J Control Release 274:1–8. https://doi.org/10.1016/j.jconrel.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  Google Scholar 

  7. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474. https://doi.org/10.1038/nrc.2017.51

    Article  CAS  Google Scholar 

  8. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y et al (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45. https://doi.org/10.1186/s12916-015-0278-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP et al (2018) Pericytes in the premetastatic niche. Cancer Res 78(11):2779–2786. https://doi.org/10.1158/0008-5472.CAN-17-3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Briozzo P, Morisset M, Capony F, Rougeot C, Rochefort H (1988) In vitro degradation of extracellular matrix with Mr 52,000 cathepsin D secreted by breast cancer cells. Cancer Res 48(13):3688–3692

    CAS  PubMed  Google Scholar 

  11. Pranjol MZI, Gutowski NJ, Hannemann M, Whatmore JL (2018) Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways. Biochim Biophys Acta, Mol Cell Res 1865(1):25–33. https://doi.org/10.1016/j.bbamcr.2017.10.005

    Article  CAS  Google Scholar 

  12. Glondu M, Coopman P, Laurent-Matha V, Garcia M, Rochefort H, Liaudet-Coopman E (2001) A mutated cathepsin-D devoid of its catalytic activity stimulates the growth of cancer cells. Oncogene 20(47):6920–6929. https://doi.org/10.1038/sj.onc.1204843

    Article  CAS  PubMed  Google Scholar 

  13. Laurent-Matha V, Maruani-Herrmann S, Prebois C, Beaujouin M, Glondu M, Noel A et al (2005) Catalytically inactive human cathepsin D triggers fibroblast invasive growth. J Cell Biol 168(3):489–499. https://doi.org/10.1083/jcb.200403078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berchem G, Glondu M, Gleizes M, Brouillet JP, Vignon F, Garcia M et al (2002) Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene 21(38):5951–5955. https://doi.org/10.1038/sj.onc.1205745

    Article  CAS  PubMed  Google Scholar 

  15. Pranjol MZ, Gutowski N, Hannemann M, Whatmore J (2015) The potential role of the proteases cathepsin D and cathepsin L in the progression and metastasis of epithelial ovarian cancer. Biomol Ther 5(4):3260–3279. https://doi.org/10.3390/biom5043260

    Article  CAS  Google Scholar 

  16. Tabish TA, Pranjol MZI, Horsell DW, Rahat AAM, Whatmore JL, Winyard PG et al (2019) Graphene oxide-based targeting of extracellular cathepsin D and cathepsin L as a novel anti-metastatic enzyme cancer therapy. Cancers (Basel) 11(3). https://doi.org/10.3390/cancers11030319

  17. Ashraf Y, Mansouri H, Laurent-Matha V, Alcaraz LB, Roger P, Guiu S et al (2019) Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. J Immunother Cancer 7(1):29. https://doi.org/10.1186/s40425-019-0498-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dubey V, Luqman S (2017) Cathepsin D as a promising target for the discovery of novel anticancer agents. Curr Cancer Drug Targets 17(5):404–422. https://doi.org/10.2174/1568009616666161229145115

    Article  CAS  PubMed  Google Scholar 

  19. Benes P, Vetvicka V, Fusek M (2008) Cathepsin D--many functions of one aspartic protease. Crit Rev Oncol Hematol 68(1):12–28. https://doi.org/10.1016/j.critrevonc.2008.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A et al (2017) The multifaceted role of the lysosomal protease cathepsins in kidney disease. Front Cell Dev Biol 5:114. https://doi.org/10.3389/fcell.2017.00114

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rochefort H (1990) Biological and clinical significance of cathepsin D in breast cancer. Semin Cancer Biol 1(2):153–160

    CAS  PubMed  Google Scholar 

  22. Rochefort H (1990) Cathepsin D in breast cancer. Breast Cancer Res Treat 16(1):3–13

    CAS  PubMed  Google Scholar 

  23. Winiarski BK, Cope N, Alexander M, Pilling LC, Warren S, Acheson N et al (2014) Clinical relevance of increased endothelial and mesothelial expression of proangiogenic proteases and VEGFA in the omentum of patients with metastatic ovarian high-grade serous carcinoma. Transl Oncol 7(2):267–276. e4. https://doi.org/10.1016/j.tranon.2014.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abbott DE, Margaryan NV, Jeruss JS, Khan S, Kaklamani V, Winchester DJ et al (2010) Reevaluating cathepsin D as a biomarker for breast cancer: serum activity levels versus histopathology. Cancer Biol Ther 9(1):23–30. https://doi.org/10.4161/cbt.9.1.10378

    Article  PubMed  PubMed Central  Google Scholar 

  25. Losch A, Kohlberger P, Gitsch G, Kaider A, Breitenecker G, Kainz C (1996) Lysosomal protease cathepsin D is a prognostic marker in endometrial cancer. Br J Cancer 73(12):1525–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hasilik A, Klein U, Waheed A, Strecker G, von Figura K (1980) Phosphorylated oligosaccharides in lysosomal enzymes: identification of alpha-N-acetylglucosamine(1)phospho(6)mannose diester groups. Proc Natl Acad Sci U S A 77(12):7074–7078. https://doi.org/10.1073/pnas.77.12.7074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fortenberry SC, Schorey JS, Chirgwin JM (1995) Role of glycosylation in the expression of human procathepsin D. J Cell Sci 108(Pt 5):2001–2006

    CAS  PubMed  Google Scholar 

  28. Gopalakrishnan MM, Grosch HW, Locatelli-Hoops S, Werth N, Smolenova E, Nettersheim M et al (2004) Purified recombinant human prosaposin forms oligomers that bind procathepsin D and affect its autoactivation. Biochem J 383(Pt. 3):507–515. https://doi.org/10.1042/BJ20040175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laurent-Matha V, Derocq D, Prebois C, Katunuma N, Liaudet-Coopman E (2006) Processing of human cathepsin D is independent of its catalytic function and auto-activation: involvement of cathepsins L and B. J Biochem 139(3):363–371. https://doi.org/10.1093/jb/mvj037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takeshima H, Sakaguchi M, Mihara K, Murakami K, Omura T (1995) Intracellular targeting of lysosomal cathepsin D in COS cells. J Biochem 118(5):981–988

    CAS  PubMed  Google Scholar 

  31. Yasuda Y, Tsukuba T, Okamoto K, Kadowaki T, Yamamoto K (2005) The role of the cathepsin E propeptide in correct folding, maturation and sorting to the endosome. J Biochem 138(5):621–630. https://doi.org/10.1093/jb/mvi159

    Article  CAS  PubMed  Google Scholar 

  32. Vetvicka V, Vetvickova J, Fusek M (2000) Role of procathepsin D activation peptide in prostate cancer growth. Prostate 44(1):1–7

    CAS  PubMed  Google Scholar 

  33. Gieselmann V, Hasilik A, von Figura K (1985) Processing of human cathepsin D in lysosomes in vitro. J Biol Chem 260(5):3215–3220

    CAS  PubMed  Google Scholar 

  34. Yoshinari M, Taurog A (1985) Lysosomal digestion of thyroglobulin: role of cathepsin D and thiol proteases. Endocrinology 117(4):1621–1631. https://doi.org/10.1210/endo-117-4-1621

    Article  CAS  PubMed  Google Scholar 

  35. Kenessey A, Nacharaju P, Ko LW, Yen SH (1997) Degradation of tau by lysosomal enzyme cathepsin D: implication for Alzheimer neurofibrillary degeneration. J Neurochem 69(5):2026–2038

    CAS  PubMed  Google Scholar 

  36. Roberg K, Johansson U, Ollinger K (1999) Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med 27(11–12):1228–1237

    CAS  PubMed  Google Scholar 

  37. Kageyama T, Tatematsu M, Ichinose M, Yahagi N, Miki K, Moriyama A et al (1998) Development-dependent expression of cathepsins d and e in various rat tissues, with special reference to the high expression of cathepsin e in fetal liver. Zool Sci 15(4):517–523. https://doi.org/10.2108/0289-0003(1998)15[517:DEOCDA]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  38. Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H et al (1995) Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 14(15):3599–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M et al (2000) A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J 19(12):2786–2792. https://doi.org/10.1093/emboj/19.12.2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M et al (2001) Congenital ovine neuronal ceroid lipofuscinosis--a cathepsin D deficiency with increased levels of the inactive enzyme. Eur J Paediatr Neurol 5(Suppl A):43–45

    PubMed  Google Scholar 

  41. Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W et al (2006) Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet 78(6):988–998. https://doi.org/10.1086/504159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fritchie K, Siintola E, Armao D, Lehesjoki AE, Marino T, Powell C et al (2009) Novel mutation and the first prenatal screening of cathepsin D deficiency (CLN10). Acta Neuropathol 117(2):201–208. https://doi.org/10.1007/s00401-008-0426-7

    Article  PubMed  Google Scholar 

  43. Siintola E, Partanen S, Stromme P, Haapanen A, Haltia M, Maehlen J et al (2006) Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129(Pt 6):1438–1445. https://doi.org/10.1093/brain/awl107

    Article  PubMed  Google Scholar 

  44. Awano T, Katz ML, O’Brien DP, Taylor JF, Evans J, Khan S et al (2006) A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis. Mol Genet Metab 87(4):341–348. https://doi.org/10.1016/j.ymgme.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  45. Cullen V, Lindfors M, Ng J, Paetau A, Swinton E, Kolodziej P et al (2009) Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Mol Brain 2:5. https://doi.org/10.1186/1756-6606-2-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K et al (2007) A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128(3):589–600. https://doi.org/10.1016/j.cell.2006.12.036

    Article  CAS  PubMed  Google Scholar 

  47. Sheikh AM, Li X, Wen G, Tauqeer Z, Brown WT, Malik M (2010) Cathepsin D and apoptosis related proteins are elevated in the brain of autistic subjects. Neuroscience 165(2):363–370. https://doi.org/10.1016/j.neuroscience.2009.10.035

    Article  CAS  PubMed  Google Scholar 

  48. Mathieu M, Vignon F, Capony F, Rochefort H (1991) Estradiol down-regulates the mannose-6-phosphate/insulin-like growth factor-II receptor gene and induces cathepsin-D in breast cancer cells: a receptor saturation mechanism to increase the secretion of lysosomal proenzymes. Mol Endocrinol 5(6):815–822. https://doi.org/10.1210/mend-5-6-815

    Article  CAS  PubMed  Google Scholar 

  49. Reithmeier RAF (1996) Assembly of proteins into membranes. New Compr Biochem:425–471. https://doi.org/10.1016/s0167-7306(08)60523-2

  50. Vetvicka V, Vagner J, Baudys M, Tang J, Foundling SI, Fusek M (1993) Human breast milk contains procathepsin D--detection by specific antibodies. Biochem Mol Biol Int 30(5):921–928

    CAS  PubMed  Google Scholar 

  51. Larsen LB, Petersen TE (1995) Identification of five molecular forms of cathepsin D in bovine milk. Adv Exp Med Biol 362:279–283

    CAS  PubMed  Google Scholar 

  52. Benes P, Koelsch G, Dvorak B, Fusek M, Vetvicka V (2002) Detection of procathepsin D in rat milk. Comp Biochem Physiol B Biochem Mol Biol 133(1):113–118

    CAS  PubMed  Google Scholar 

  53. Zuhlsdorf M, Imort M, Hasilik A, von Figura K (1983) Molecular forms of beta-hexosaminidase and cathepsin D in serum and urine of healthy subjects and patients with elevated activity of lysosomal enzymes. Biochem J 213(3):733–740

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baechle D, Flad T, Cansier A, Steffen H, Schittek B, Tolson J et al (2006) Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1L. J Biol Chem 281(9):5406–5415. https://doi.org/10.1074/jbc.M504670200

    Article  CAS  PubMed  Google Scholar 

  55. Winiarski BK, Wolanska KI, Rai S, Ahmed T, Acheson N, Gutowski NJ et al (2013) Epithelial ovarian cancer-induced angiogenic phenotype of human omental microvascular endothelial cells may occur independently of VEGF signaling. Transl Oncol 6(6):703–714

    PubMed  PubMed Central  Google Scholar 

  56. Rochefort H (1992) Cathepsin D in breast cancer: a tissue marker associated with metastasis. Eur J Cancer 28A(11):1780–1783

    CAS  PubMed  Google Scholar 

  57. Ferrandina G, Scambia G, Bardelli F, Benedetti Panici P, Mancuso S, Messori A (1997) Relationship between cathepsin-D content and disease-free survival in node-negative breast cancer patients: a meta-analysis. Br J Cancer 76(5):661–666

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Foekens JA, Look MP, Bolt-de Vries J, Meijer-van Gelder ME, van Putten WL, Klijn JG (1999) Cathepsin-D in primary breast cancer: prognostic evaluation involving 2810 patients. Br J Cancer 79(2):300–307. https://doi.org/10.1038/sj.bjc.6690048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Briozzo P, Badet J, Capony F, Pieri I, Montcourrier P, Barritault D et al (1991) MCF7 mammary cancer cells respond to bFGF and internalize it following its release from extracellular matrix: a permissive role of cathepsin D. Exp Cell Res 194(2):252–259

    CAS  PubMed  Google Scholar 

  60. Chen L, Li H, Liu W, Zhu J, Zhao X, Wright E et al (2011) Olfactomedin 4 suppresses prostate cancer cell growth and metastasis via negative interaction with cathepsin D and SDF-1. Carcinogenesis 32(7):986–994. https://doi.org/10.1093/carcin/bgr065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Konno S, Cherry JP, Mordente JA, Chapman JR, Choudhury MS, Mallouh C et al (2001) Role of cathepsin D in prostatic cancer cell growth and its regulation by brefeldin A. World J Urol 19(4):234–239

    CAS  PubMed  Google Scholar 

  62. Morikawa W, Yamamoto K, Ishikawa S, Takemoto S, Ono M, Fukushi J et al (2000) Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem 275(49):38912–38920. https://doi.org/10.1074/jbc.M005402200

    Article  CAS  PubMed  Google Scholar 

  63. Zhu L, Wada M, Usagawa Y, Yasukochi Y, Yokoyama A, Wada N et al (2013) Overexpression of cathepsin D in malignant melanoma. Fukuoka Igaku Zasshi 104(10):370–375

    CAS  PubMed  Google Scholar 

  64. Fukuda ME, Iwadate Y, Machida T, Hiwasa T, Nimura Y, Nagai Y et al (2005) Cathepsin D is a potential serum marker for poor prognosis in glioma patients. Cancer Res 65(12):5190–5194. https://doi.org/10.1158/0008-5472.CAN-04-4134

    Article  CAS  PubMed  Google Scholar 

  65. Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM et al (2000) Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta 291(2):157–170

    CAS  PubMed  Google Scholar 

  66. Pruitt FL, He Y, Franco OE, Jiang M, Cates JM, Hayward SW (2013) Cathepsin D acts as an essential mediator to promote malignancy of benign prostatic epithelium. Prostate 73(5):476–488. https://doi.org/10.1002/pros.22589

    Article  CAS  PubMed  Google Scholar 

  67. Vetvicka V, Vetvickova J, Benes P (2004) Role of enzymatically inactive procathepsin D in lung cancer. Anticancer Res 24(5A):2739–2743

    CAS  PubMed  Google Scholar 

  68. Nazeer T, Malfetano JH, Rosano TG, Ross JS (1992) Correlation of tumor cytosol cathepsin D with differentiation and invasiveness of endometrial adenocarcinoma. Am J Clin Pathol 97(6):764–769

    CAS  PubMed  Google Scholar 

  69. Brouillet JP, Dufour F, Lemamy G, Garcia M, Schlup N, Grenier J et al (1997) Increased cathepsin D level in the serum of patients with metastatic breast carcinoma detected with a specific pro-cathepsin D immunoassay. Cancer 79(11):2132–2136

    CAS  PubMed  Google Scholar 

  70. Vetvicka V, Vektvickova J, Fusek M (1994) Effect of human procathepsin D on proliferation of human cell lines. Cancer Lett 79(2):131–135

    CAS  PubMed  Google Scholar 

  71. Masson O, Prebois C, Derocq D, Meulle A, Dray C, Daviaud D et al (2011) Cathepsin-D, a key protease in breast cancer, is up-regulated in obese mouse and human adipose tissue, and controls adipogenesis. PLoS One 6(2):e16452. https://doi.org/10.1371/journal.pone.0016452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baekelandt M, Holm R, Trope CG, Nesland JM, Kristensen GB (1999) The significance of metastasis-related factors cathepsin-D and nm23 in advanced ovarian cancer. Ann Oncol 10(11):1335–1341

    CAS  PubMed  Google Scholar 

  73. Ferrandina G, Scambia G, Fagotti A, D’Agostino G, Benedetti Panici P, Carbone A et al (1998) Immunoradiometric and immunohistochemical analysis of Cathepsin D in ovarian cancer: lack of association with clinical outcome. Br J Cancer 78(12):1645–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Henzen-Logmans SC, Fieret EJ, Berns EM, van der Burg ME, Klijn JG, Foekens JA (1994) Ki-67 staining in benign, borderline, malignant primary and metastatic ovarian tumors: correlation with steroid receptors, epidermal-growth-factor receptor and cathepsin D. Int J Cancer 57(4):468–472

    CAS  PubMed  Google Scholar 

  75. Losch A, Schindl M, Kohlberger P, Lahodny J, Breitenecker G, Horvat R et al (2004) Cathepsin D in ovarian cancer: prognostic value and correlation with p53 expression and microvessel density. Gynecol Oncol 92(2):545–552. https://doi.org/10.1016/j.ygyno.2003.11.016

    Article  CAS  PubMed  Google Scholar 

  76. Chai Y, Wu W, Zhou C, Zhou J (2012) The potential prognostic value of cathepsin D protein in serous ovarian cancer. Arch Gynecol Obstet 286(2):465–471. https://doi.org/10.1007/s00404-012-2318-2

    Article  CAS  PubMed  Google Scholar 

  77. Ollinger K (2000) Inhibition of cathepsin D prevents free-radical-induced apoptosis in rat cardiomyocytes. Arch Biochem Biophys 373(2):346–351. https://doi.org/10.1006/abbi.1999.1567

    Article  CAS  PubMed  Google Scholar 

  78. Kagedal K, Johansson U, Ollinger K (2001) The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J 15(9):1592–1594

    CAS  PubMed  Google Scholar 

  79. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11(5):550–563. https://doi.org/10.1038/sj.cdd.4401382

    Article  CAS  PubMed  Google Scholar 

  80. Blomgran R, Zheng L, Stendahl O (2007) Cathepsin-cleaved bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol 81(5):1213–1223. https://doi.org/10.1189/jlb.0506359

    Article  CAS  PubMed  Google Scholar 

  81. Johansson AC, Steen H, Ollinger K, Roberg K (2003) Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ 10(11):1253–1259. https://doi.org/10.1038/sj.cdd.4401290

    Article  CAS  PubMed  Google Scholar 

  82. Zuzarte-Luis V, Montero JA, Torre-Perez N, Garcia-Porrero JA, Hurle JM (2007) Cathepsin D gene expression outlines the areas of physiological cell death during embryonic development. Dev Dyn 236(3):880–885. https://doi.org/10.1002/dvdy.21076

    Article  CAS  PubMed  Google Scholar 

  83. Zuzarte-Luis V, Montero JA, Kawakami Y, Izpisua-Belmonte JC, Hurle JM (2007) Lysosomal cathepsins in embryonic programmed cell death. Dev Biol 301(1):205–217. https://doi.org/10.1016/j.ydbio.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  84. Beaujouin M, Baghdiguian S, Glondu-Lassis M, Berchem G, Liaudet-Coopman E (2006) Overexpression of both catalytically active and -inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity. Oncogene 25(13):1967–1973. https://doi.org/10.1038/sj.onc.1209221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tardy C, Tyynela J, Hasilik A, Levade T, Andrieu-Abadie N (2003) Stress-induced apoptosis is impaired in cells with a lysosomal targeting defect but is not affected in cells synthesizing a catalytically inactive cathepsin D. Cell Death Differ 10(9):1090–1100. https://doi.org/10.1038/sj.cdd.4401272

    Article  CAS  PubMed  Google Scholar 

  86. Rochefort H, Capony F, Garcia M, Cavailles V, Freiss G, Chambon M et al (1987) Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis? J Cell Biochem 35(1):17–29. https://doi.org/10.1002/jcb.240350103

    Article  CAS  PubMed  Google Scholar 

  87. Laurent-Matha V, Huesgen PF, Masson O, Derocq D, Prebois C, Gary-Bobo M et al (2012) Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB J 26(12):5172–5181. https://doi.org/10.1096/fj.12-205229

    Article  CAS  PubMed  Google Scholar 

  88. Maynadier M, Farnoud R, Lamy PJ, Laurent-Matha V, Garcia M, Rochefort H (2013) Cathepsin D stimulates the activities of secreted plasminogen activators in the breast cancer acidic environment. Int J Oncol 43(5):1683–1690. https://doi.org/10.3892/ijo.2013.2095

    Article  CAS  PubMed  Google Scholar 

  89. Wolf M, Clark-Lewis I, Buri C, Langen H, Lis M, Mazzucchelli L (2003) Cathepsin D specifically cleaves the chemokines macrophage inflammatory protein-1 alpha, macrophage inflammatory protein-1 beta, and SLC that are expressed in human breast cancer. Am J Pathol 162(4):1183–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rochefort H, Capony F, Garcia M (1990) Cathepsin D: a protease involved in breast cancer metastasis. Cancer Metastasis Rev 9(4):321–331

    CAS  PubMed  Google Scholar 

  91. Capony F, Rougeot C, Montcourrier P, Cavailles V, Salazar G, Rochefort H (1989) Increased secretion, altered processing, and glycosylation of pro-cathepsin D in human mammary cancer cells. Cancer Res 49(14):3904–3909

    CAS  PubMed  Google Scholar 

  92. Richo G, Conner GE (1991) Proteolytic activation of human procathepsin D. Adv Exp Med Biol 306:289–296. https://doi.org/10.1007/978-1-4684-6012-4_35

    Article  CAS  PubMed  Google Scholar 

  93. Westley BR, May FE (1996) Cathepsin D and breast cancer. Eur J Cancer 32A(1):15–24

    CAS  PubMed  Google Scholar 

  94. Crowe DL, Shuler CF (1999) Regulation of tumor cell invasion by extracellular matrix. Histol Histopathol 14(2):665–671

    CAS  PubMed  Google Scholar 

  95. Vangala G, Imhoff FM, Squires CML, Cridge AG, Baird SK (2019) Mesenchymal stem cell homing towards cancer cells is increased by enzyme activity of cathepsin D. Exp Cell Res 383:111494. https://doi.org/10.1016/j.yexcr.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  96. Vignon F, Capony F, Chambon M, Freiss G, Garcia M, Rochefort H (1986) Autocrine growth stimulation of the MCF 7 breast cancer cells by the estrogen-regulated 52 K protein. Endocrinology 118(4):1537–1545. https://doi.org/10.1210/endo-118-4-1537

    Article  CAS  PubMed  Google Scholar 

  97. Ohri SS, Vashishta A, Proctor M, Fusek M, Vetvicka V (2008) The propeptide of cathepsin D increases proliferation, invasion and metastasis of breast cancer cells. Int J Oncol 32(2):491–498

    CAS  PubMed  Google Scholar 

  98. Pranjol MZI, Gutowski NJ, Hannemann M, Whatmore JL (2019) Cathepsin L induces proangiogenic changes in human omental microvascular endothelial cells via activation of the ERK1/2 pathway. Curr Cancer Drug Targets 19(3):231–242. https://doi.org/10.2174/1568009618666180831123951

    Article  CAS  PubMed  Google Scholar 

  99. Banerjee S, Kaye S (2011) The role of targeted therapy in ovarian cancer. Eur J Cancer 47(Suppl 3):S116–S130. https://doi.org/10.1016/S0959-8049(11)70155-1

    Article  CAS  PubMed  Google Scholar 

  100. Lin Z, Liu Y, Sun Y, He X (2011) Expression of Ets-1, Ang-2 and maspin in ovarian cancer and their role in tumor angiogenesis. J Exp Clin Cancer Res 30:31. https://doi.org/10.1186/1756-9966-30-31

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tebben PJ, Kalli KR, Cliby WA, Hartmann LC, Grande JP, Singh RJ et al (2005) Elevated fibroblast growth factor 23 in women with malignant ovarian tumors. Mayo Clin Proc 80(6):745–751. https://doi.org/10.1016/S0025-6196(11)61528-0

    Article  CAS  PubMed  Google Scholar 

  102. Toutirais O, Chartier P, Dubois D, Bouet F, Leveque J, Catros-Quemener V et al (2003) Constitutive expression of TGF-beta1, interleukin-6 and interleukin-8 by tumor cells as a major component of immune escape in human ovarian carcinoma. Eur Cytokine Netw 14(4):246–255

    CAS  PubMed  Google Scholar 

  103. Tanaka Y, Miyamoto S, Suzuki SO, Oki E, Yagi H, Sonoda K et al (2005) Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin Cancer Res 11(13):4783–4792. https://doi.org/10.1158/1078-0432.CCR-04-1426

    Article  CAS  PubMed  Google Scholar 

  104. Nilsson MB, Langley RR, Fidler IJ (2005) Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 65(23):10794–10800. https://doi.org/10.1158/0008-5472.CAN-05-0623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lokshin AE, Winans M, Landsittel D, Marrangoni AM, Velikokhatnaya L, Modugno F et al (2006) Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol Oncol 102(2):244–251. https://doi.org/10.1016/j.ygyno.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  106. Hu L, Roth JM, Brooks P, Luty J, Karpatkin S (2008) Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Res 68(12):4666–4673. https://doi.org/10.1158/0008-5472.CAN-07-6276

    Article  CAS  PubMed  Google Scholar 

  107. Garcia M, Derocq D, Pujol P, Rochefort H (1990) Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency. Oncogene 5(12):1809–1814

    CAS  PubMed  Google Scholar 

  108. Liaudet E, Garcia M, Rochefort H (1994) Cathepsin D maturation and its stimulatory effect on metastasis are prevented by addition of KDEL retention signal. Oncogene 9(4):1145–1154

    CAS  PubMed  Google Scholar 

  109. Liaudet E, Derocq D, Rochefort H, Garcia M (1995) Transfected cathepsin D stimulates high density cancer cell growth by inactivating secreted growth inhibitors. Cell Growth Differ 6(9):1045–1052

    CAS  PubMed  Google Scholar 

  110. Derocq D, Prebois C, Beaujouin M, Laurent-Matha V, Pattingre S, Smith GK et al (2012) Cathepsin D is partly endocytosed by the LRP1 receptor and inhibits LRP1-regulated intramembrane proteolysis. Oncogene 31(26):3202–3212. https://doi.org/10.1038/onc.2011.501

    Article  CAS  PubMed  Google Scholar 

  111. Fusek M, Vetvicka V (1994) Mitogenic function of human procathepsin D: the role of the propeptide. Biochem J 303(Pt 3):775–780

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vetvicka V, Vetvickova J, Fusek M (1998) Effect of procathepsin D and its activation peptide on prostate cancer cells. Cancer Lett 129(1):55–59

    CAS  PubMed  Google Scholar 

  113. Vetvicka V, Vetvickova J, Fusek M (1999) Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Res Treat 57(3):261–269

    CAS  PubMed  Google Scholar 

  114. Vetvicka V, Vetvickova J, Hilgert I, Voburka Z, Fusek M (1997) Analysis of the interaction of procathepsin D activation peptide with breast cancer cells. Int J Cancer 73(3):403–409

    CAS  PubMed  Google Scholar 

  115. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200. https://doi.org/10.1038/nature03875

    Article  CAS  PubMed  Google Scholar 

  116. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38. https://doi.org/10.1152/ajpcell.00084.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Monickaraj F, McGuire P, Das A (2018) Cathepsin D plays a role in endothelial-pericyte interactions during alteration of the blood-retinal barrier in diabetic retinopathy. FASEB J 32(5):2539–2548. https://doi.org/10.1096/fj.201700781RR

    Article  PubMed  PubMed Central  Google Scholar 

  118. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G et al (2011) A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365(26):2484–2496. https://doi.org/10.1056/NEJMoa1103799

    Article  CAS  PubMed  Google Scholar 

  119. Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A et al (2012) OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol 30(17):2039–2045. https://doi.org/10.1200/JCO.2012.42.0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stone RL, Sood AK, Coleman RL (2010) Collateral damage: toxic effects of targeted antiangiogenic therapies in ovarian cancer. Lancet Oncol 11(5):465–475. https://doi.org/10.1016/S1470-2045(09)70362-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rodriguez M (2013) Ziv-aflibercept use in metastatic colorectal cancer. J Adv Pract Oncol 4(5):348–352

    PubMed  PubMed Central  Google Scholar 

  122. Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F et al (2007) Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 99(16):1232–1239. https://doi.org/10.1093/jnci/djm086

    Article  PubMed  Google Scholar 

  123. Tateo S, Mereu L, Salamano S, Klersy C, Barone M, Spyropoulos AC et al (2005) Ovarian cancer and venous thromboembolic risk. Gynecol Oncol 99(1):119–125.https://doi.org/10.1016/j.ygyno.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  124. O’Toole SA, Beith JM, Millar EK, West R, McLean A, Cazet A et al (2013) Therapeutic targets in triple negative breast cancer. J Clin Pathol 66(6):530–542. https://doi.org/10.1136/jclinpath-2012-201361

    Article  CAS  PubMed  Google Scholar 

  125. Huang L, Liu Z, Chen S, Liu Y, Shao Z (2013) A prognostic model for triple-negative breast cancer patients based on node status, cathepsin-D and Ki-67 index. PLoS One 8(12):e83081. https://doi.org/10.1371/journal.pone.0083081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vetvicka V, Benes P, Fusek M (2002) Procathepsin D in breast cancer: what do we know? Effects of ribozymes and other inhibitors. Cancer Gene Ther 9(10):854–863. https://doi.org/10.1038/sj.cgt.7700508

    Article  CAS  PubMed  Google Scholar 

  127. Gupta V, Yull F, Khabele D (2018) Bipolar tumor-associated macrophages in ovarian cancer as targets for therapy. Cancers (Basel) 10(10). https://doi.org/10.3390/cancers10100366

  128. Fernandes C, Suares D, Yergeri MC (2018) Tumor microenvironment targeted nanotherapy. Front Pharmacol 9:1230. https://doi.org/10.3389/fphar.2018.01230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The figures were created with biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahidul I. Pranjol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pranjol, Z.I., Whatmore, J.L. (2020). Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-43093-1_1

Download citation

Publish with us

Policies and ethics