Skip to main content

Motion Planning for Reconfigurable Mobile Robots Using Hierarchical Fast Marching Trees

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XII

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

Abstract

Reconfigurable mobile robots are versatile platforms that may safely traverse cluttered environments by morphing their physical geometry. However, planning paths for these robots is challenging due to their many degrees of freedom. We propose a novel hierarchical variant of the Fast Marching Tree (FMT*) algorithm. Our algorithm assumes a decomposition of the full state space into multiple sub-spaces, and begins by rapidly finding a set of paths through one such sub-space. This set of solutions is used to generate a biased sampling distribution, which is then explored to find a solution in the full state space. This technique provides a novel way to incorporate prior knowledge of sub-spaces to efficiently bias search within the existing FMT* framework. Importantly, probabilistic completeness and asymptotic optimality are preserved. Experimental results are provided for a reconfigurable wheel-on-leg platform that benchmark the algorithm against state-of-the-art samplingbased planners. In minimizing an energy objective that combines the mechanical work required for platform locomotion with that required for reconfiguration, the planner produces intuitive behaviors where the robot dynamically adjusts its footprint, varies its height, and clambers over obstacles using legged locomotion. These results illustrate the generality of the planner in exploiting the platform’s mechanical ability to fluidly transition between various physical geometric configurations, and wheeled/legged locomotion modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-based algorithms for optimal motion planning. In: IEEE ICRA. pp. 2421–2428 (2013)

    Google Scholar 

  2. Ayanian, N., Kumar, V.: Decentralized feedback controllers for multiagent teams in environments with obstacles. IEEE Trans. Robot. 26(5), 878–887 (2010)

    Google Scholar 

  3. Belter, D., Labecki, P., Skrzypczynski, P.: Adaptive Motion Planning for Autonomous Rough Terrain Traversal with a Walking Robot. J. Field Robot. 33(3), 337–370 (2015)

    Google Scholar 

  4. Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically nearoptimal motion planning. Int. J. Robot. Res. 33(1), 18–47 (2014)

    Google Scholar 

  5. Ferguson, D., Stentz, A.: Using Interpolation to Improve Path Planning: The Field D* Algorithm. J. Field Robot. 23(2), 79–101 (2006)

    Google Scholar 

  6. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed RRT*: Optimal Samplingbased Path Planning focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. In: IEEE/RSJ IROS. pp. 2997–3004 (2014)

    Google Scholar 

  7. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs. In: IEEE ICRA. pp. 3067–3074 (2015)

    Google Scholar 

  8. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions. Int. J. Robot. Res. 34(7), 883–921 (2015)

    Google Scholar 

  9. Jordan, M., Perez, A.: Optimal Bidirectional Rapidly-Exploring Random Trees Random Trees. Tech. rep., MIT CSAIL, TR-2013-021 (2013)

    Google Scholar 

  10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Google Scholar 

  11. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics :. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

    Google Scholar 

  12. Kuffner, J.J., LaValle, S.M.: RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: IEEE ICRA. pp. 995–1001 (2000)

    Google Scholar 

  13. Papadopoulos, E.G., Rey, D.A.: A New Measure of Tipover Stability Margin for Mobile Manipulators. In: IEEE ICRA. pp. 3111–3116 (1996)

    Google Scholar 

  14. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a synergistic combination of layers of planning. IEEE Trans. Robot. 26(3), 469–482 (2010)

    Google Scholar 

  15. Pokorny, F., Hawasly, M., Ramamoorthy, S.: Topological trajectory classification with filtrations of simplicial complexes and persistent homology. Int. J. Robot. Res. 35(1-3), 204–223 (2016)

    Google Scholar 

  16. Reid, W., Göktoǧan, A.H., Pérez-Grau, F.J., Sukkarieh, S.: Actively Articulated Suspension for a Wheel-on-Leg Rover Operating on a Martian Analog Surface. In: IEEE ICRA. pp. 5596–5602 (2016)

    Google Scholar 

  17. Reid, W., Göktoǧan, A.H., Sukkarieh, S.: Moving MAMMOTH : Stable Motion for a Reconfigurable Wheel-on-Leg Rover. In: ARAA ACRA (2014)

    Google Scholar 

  18. Rickert, M., Brock, O., Knoll, A.: Balancing exploration and exploitation in motion planning. IEEE T. Robot. 30(6), 2812–2817 (2014)

    Google Scholar 

  19. Salzman, O., Halperin, D.: Asymptotically-optimal motion planning using lower bounds on cost. In: IEEE ICRA. pp. 4167–4172 (2015)

    Google Scholar 

  20. Satzinger, B.W., Lau, C., Byl, M., Byl, K.: Tractable Locomotion Planning for RoboSimian. Int. J. Robot. Res. 34(13), 1541–1558 (2015)

    Google Scholar 

  21. Starek, J.A., Schmerling, E., Janson, L., Pavone, M.: Bidirectional Fast Marching Trees: An Optimal Sampling-Based Algorithm for Bidirectional Motion Planning. In: WAFR (2014)

    Google Scholar 

  22. Sucan, I., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robot. Autom. Mag. pp. 72–82 (2012)

    Google Scholar 

  23. Vernaza, P., Lee, D.D.: Learning and exploiting low dimensional structure for efficient holonomic motion planning in high dimensional spaces. Int. J. Robot. Res. 31(14), 1739–1760 (2012)

    Google Scholar 

  24. Yi, D., Goodrich, M.A., Seppi, K.D.: Homotopy-Aware RRT* : Toward Human-Robot Topological Path-Planning. In: ACM/IEEE HRI. pp. 279–286 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Reid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reid, W., Fitch, R., Göktoǧgan, A.H., Sukkarieh, S. (2020). Motion Planning for Reconfigurable Mobile Robots Using Hierarchical Fast Marching Trees. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_42

Download citation

Publish with us

Policies and ethics