Skip to main content

Current Status of PET Technology

  • Chapter
  • First Online:
Advances in PET

Abstract

Recent technological advancements have led to the development of new PET instrumentation that provides clinical images of whole-body surveys with high signal-to-noise ratio with scan times of 10–15 min. In this chapter, we describe the current status of modern PET/CT systems and the underlying technological developments. Our focus will be on hardware developments ranging from improved Lu-based scintillators, through new photosensor technology with an emphasis on silicon photomultipliers, to new detector designs meant to improve system spatial and timing resolution as well as sensitivity. We briefly describe more advanced image generation methods that aim to produce more accurate images with high signal-to-noise ratio while utilizing the enhanced information achieved by the new hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kircher MF, Hricak H, Larson SM. Molecular imaging for personalized cancer care. Mol Oncol. 2012;6(2):182–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238(2):405–22.

    Article  Google Scholar 

  3. Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354(5):496–507.

    Article  CAS  PubMed  Google Scholar 

  4. Buck AK, et al. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med. 2010;51(3):401–12.

    Article  PubMed  Google Scholar 

  5. Mankoff DA, et al. Development of companion diagnostics. Semin Nucl Med. 2016;46(1):47–56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ter-Pogossian MM, et al. PETT VI: a positron emission tomograph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomogr. 1982;6:125–33.

    Article  CAS  PubMed  Google Scholar 

  7. Ter-Pogossian M, et al. Super PETT I: a positron emission tomograph utilizing photon time-of-flight information. IEEE Trans Med Imaging. 1982;M1-1(3):179–87.

    Article  Google Scholar 

  8. Gariod R, et al. The “LETI” positron tomograph architecture and time-of-flight improvements. In: Proceedings of IEEE workshop on time-of-flight emission tomography. St. Louis: Washington University; 1982.

    Google Scholar 

  9. Wong WH, et al. Performance characteristics of the University of Texas TOF PET-I Camera. J Nucl Med. 1984;25(5):46–7.

    Google Scholar 

  10. Lewellen TK, et al. Performance measurements of the SP3000/UW time-of-flight positron emission tomograph. IEEE Trans Nucl Sci. 1988;35(1):665–9.

    Article  CAS  Google Scholar 

  11. Mazoyer B, et al. Physical characteristics of TTV03, a new high spatial resolution time-of-flight positron tomograph. IEEE Trans Nucl Sci. 1990;37(2):778–82.

    Article  Google Scholar 

  12. Daube-Witherspoon ME, et al. Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight PET. J Nucl Med. 2014;55:602–7.

    Article  PubMed  Google Scholar 

  13. Karp JS, et al. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49(3):462–70.

    Article  PubMed  Google Scholar 

  14. Surti S, et al. Impact of TOF PET on whole-body oncologic studies: a human observer detection and localization study. J Nucl Med. 2011;52:712–9.

    Article  PubMed  Google Scholar 

  15. Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol. 2011;56:155–68.

    Article  PubMed  Google Scholar 

  16. Kadrmas DJ, et al. Impact of time-of-flight on PET tumor detection. J Nucl Med. 2009;50(8):1315–23.

    Article  PubMed  Google Scholar 

  17. Kadrmas DJ, et al. Effect of scan time on oncologic lesion detection in whole-body PET. IEEE Trans Nucl Sci. 2012;59:1940–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lois C, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med. 2010;51:237–45.

    Article  PubMed  Google Scholar 

  19. Muehllehner G, Karp JS, Surti S. Design considerations for PET scanners. Q J Nucl Med. 2002;46(1):16–23.

    Google Scholar 

  20. Moses WW, Derenzo SE. Prospects for time-of-flight PET using LSO scintillator. IEEE Trans Nucl Sci. 1999;46(3):474–8.

    Article  CAS  Google Scholar 

  21. Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci. 2003;50(5):1325–30.

    Article  Google Scholar 

  22. Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate - a fast, efficient new scintillator. IEEE Trans Nucl Sci. 1992;39(4):502–5.

    Article  CAS  Google Scholar 

  23. Cherry SR, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci. 1997;44:1161–6.

    Article  CAS  Google Scholar 

  24. Schmand M, et al. Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT. IEEE Trans Nucl Sci. 1998;45(6):3000–6.

    Article  Google Scholar 

  25. Wienhard K, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 2002;49(1):104–10.

    Article  Google Scholar 

  26. Spinks TJ, Bloomfield PM. A comparison of count rate performance for 15-O-water blood flow studies in the CTI HR+ and Accel tomographs in 3D mode. In: IEEE nuclear science symposium and medical imaging conference. Norfolk; 2002.

    Google Scholar 

  27. Surti S, et al. Imaging performance of A-PET: a small animal PET camera. IEEE Trans Med Imaging. 2005;24(7):844–52.

    Article  PubMed  Google Scholar 

  28. Surti S, et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471–80.

    PubMed  Google Scholar 

  29. Spurrier MA, et al. Effects of Ca2+ Co-doping on the scintillation properties of LSO:Ce. IEEE Trans Nucl Sci. 2008;55(3):1178–82.

    Article  CAS  Google Scholar 

  30. Szczesniak T, et al. Timing resolution and decay time of LSO crystals Co-doped with calcium. IEEE Trans Nucl Sci. 2010;57(3):1329–34.

    Article  CAS  Google Scholar 

  31. Blahuta S, et al. Evidence and consequences of Ce in LYSO: Ce, Ca and LYSO: Ce, Mg single crystals for medical imaging applications. IEEE Trans Nucl Sci. 2013;60(4):3134–41.

    Article  CAS  Google Scholar 

  32. Brunner SE. Fast single photon detection for scintillation and cherenkov applications using silicon photomultipliers. 2014, TU Vienna.

    Google Scholar 

  33. Brunner SE, et al. Studies on the Cherenkov effect for improved time resolution of TOF-PET. IEEE Trans Nucl Sci. 2014;61:443–7.

    Article  CAS  Google Scholar 

  34. Brunner SE, Schaart DR. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET. Phys Med Biol. 2017;62(11):4421–39.

    Article  CAS  PubMed  Google Scholar 

  35. Kwon SI, et al. Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET. Phys Med Biol. 2016;61:L38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buzhan P, et al. An advanced study of silicon photomultiplier. ICFA Instrum Bullet. 2001;23:28.

    Google Scholar 

  37. Buzhan P, et al. Silicon photomultiplier and its possible applications. Nucl Inst Methods Phys Res A. 2003;504(1–3):48–52.

    Article  CAS  Google Scholar 

  38. Bisello D, et al. Metal-Resistive layer-Silicon (MRS) avalanche detectors with negative feedback. Nucl Inst Methods Phys Res A. 1995;360(1–2):83–6.

    Article  CAS  Google Scholar 

  39. Golovin V, Saveliev V. Novel type of avalanche photodetector with Geiger mode operation. Nucl Inst Methods Phys Res A. 2004;518(1–2):560–4.

    Article  CAS  Google Scholar 

  40. Renker D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Inst Methods Phys Res A. 2006;567(1):48–56.

    Article  CAS  Google Scholar 

  41. Frach T, et al. The digital silicon photomultiplier: principle of operation and intrinsic detector performance. In: IEEE nuclear science symposium and medical imaging conference. Orlando; 2009.

    Google Scholar 

  42. Degenhardt C, et al. The digital silicon photomultiplier ; a novel sensor for the detection of scintillation light. In: IEEE nuclear science symposium and medical imaging conference. Orlando; 2009.

    Google Scholar 

  43. Casey ME, Nutt R. A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. 1986;33(1):460–3.

    Article  Google Scholar 

  44. Wong WH, et al. A 2-dimensional detector decoding study on BGO arrays with quadrant sharing photomultipliers. IEEE Trans Nucl Sci. 1994;41(4):1453–7.

    Article  CAS  Google Scholar 

  45. Surti S, et al. Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci. 2000;47:1030–6.

    Article  CAS  Google Scholar 

  46. Jakoby BW, et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56(8):2375–89.

    Article  CAS  PubMed  Google Scholar 

  47. Bettinardi V, et al. Physical performance of the new hybrid PET/CT Discovery-690. Med Phys. 2011;38(10):5394–411.

    Article  CAS  PubMed  Google Scholar 

  48. Kolthammer JA, et al. Performance evaluation of the ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014;59(14):3843–59.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Burr KC, et al. A new modular and scalable detector for a time-of-flight PET scanner. In: IEEE nuclear science symposium and medical imaging conference. Anaheim; 2012.

    Google Scholar 

  50. Moses WW, Ullisch M. Factors influencing timing resolution in a commercial LSO PET camera. IEEE Trans Nucl Sci. 2006;53(1):78–85.

    Article  Google Scholar 

  51. Krishnamoorthy S, et al. Design and performance of a high spatial-resolution, time-of-flight PET detector. IEEE Trans Nucl Sci. 2014;61:1092–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Son J-W, Ko GB, Won JY, Yoon HS, Lee JS. Development and performance evaluation of a time-of-flight positron emission tomography detector based on a high-quantum-efficiency multi-anode photomultiplier tube. IEEE Trans Nucl Sci. 2014;63:44–51.

    Article  Google Scholar 

  53. Ferri A, et al. 100ps coincidence time resolution with LYSO coupled to NUV-HD SiPMs. In: IEEE nuclear science symposium and medical imaging conference. San Diego; 2015.

    Google Scholar 

  54. van Dam HT, et al. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation. Phys Med Biol. 2013;58(10):3243–58.

    Article  PubMed  CAS  Google Scholar 

  55. Seifert S, et al. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution. Phys Med Biol. 2013;58(9):3061–74.

    Article  PubMed  Google Scholar 

  56. Borghi G, et al. A 32 mm × 32 mm × 22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI. Phys Med Biol. 2016;61(13):4929–49.

    Article  CAS  PubMed  Google Scholar 

  57. Popescu LM. Iterative image reconstruction using geometrically ordered subsets with list-mode data. In: IEEE nuclear science symposium and medical imaging conference. Rome; 2004.

    Google Scholar 

  58. Daube-Witherspoon ME, et al. Comparison of list-mode and DIRECT approaches for time-of-flight PET reconstruction. IEEE Trans Med Imaging. 2012;31:1461–71.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Asma E, et al. Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images. In: 2012 IEEE nuclear science symposium and medical imaging conference. Anaheim; 2012.

    Google Scholar 

  60. Panin VY, et al. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.

    Article  PubMed  Google Scholar 

  61. Tong S, Alessio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys Med Biol. 2010;55(5):1453–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Panin VY, Aykac M, Casey ME. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source. Phys Med Biol. 2013;58:3649–69.

    Article  CAS  PubMed  Google Scholar 

  63. Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885–99.

    Article  PubMed  Google Scholar 

  64. Rezaei A, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging. 2012;31:2224–33.

    Article  PubMed  Google Scholar 

  65. Nuyts J, Rezaei A, Defrise M. ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. In: 2012 IEEE nuclear science symposium and medical imaging conference. Anaheim: IEEE; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleman Surti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surti, S., Karp, J.S. (2020). Current Status of PET Technology. In: Zhang, J., Knopp, M. (eds) Advances in PET. Springer, Cham. https://doi.org/10.1007/978-3-030-43040-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43040-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43039-9

  • Online ISBN: 978-3-030-43040-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics