Skip to main content

Persistence Concepts for 2D Skeleton Evolution Analysis

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization V (TopoInVis 2017)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Included in the following conference series:

Abstract

In this work, we present concepts for the analysis of the evolution of two-dimensional skeletons. By introducing novel persistence concepts, we are able to reduce typical temporal incoherence, and provide insight in skeleton dynamics. We exemplify our approach by means of a simulation of viscous fingering—a highly dynamic process whose analysis is a hot topic in porous media research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Submanifold/Skeleton_Persistence.

  2. 2.

    https://github.com/Submanifold/Aleph.

References

  1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. Technical Report WS-94-03, AAAI (1994)

    Google Scholar 

  2. Carstens, C., Horadam, K.: Persistent homology of collaboration networks. Math. Prob. Eng. 2013, 815,035:1–815,035:7 (2013)

    Google Scholar 

  3. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  Google Scholar 

  4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  5. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete Morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2015)

    Article  Google Scholar 

  6. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence (2010)

    Google Scholar 

  7. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  Google Scholar 

  8. Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification of functions on 2-manifolds. In: Proceedings of the 22nd Annual Symposium on Computational Geometry, pp. 127–134. ACM Press, New York (2006)

    Google Scholar 

  9. Farin, G.: Curves and Surfaces for Computer-aided Geometric Design: A Practical Guide, 3rd edn. Elsevier, New York (1993)

    MATH  Google Scholar 

  10. Kurlin, V.: A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space. Comput. Graph. Forum 34(5), 253–262 (2015)

    Article  Google Scholar 

  11. Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies – a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  12. Lukasczyk, J., Aldrich, G., Steptoe, M., Favelier, G., Gueunet, C., Tierny, J., Maciejewski, R., Hamann, B., Leitte, H.: Viscous fingering: a topological visual analytic approach. In: Physical Modeling for Virtual Manufacturing Systems and Processes. Applied Mechanics and Materials, vol. 869, pp. 9–19 (2017)

    Google Scholar 

  13. Rieck, B., Leitte, H.: Exploring and comparing clusterings of multivariate data sets using persistent homology. Comput. Graph. Forum 35(3), 81–90 (2016)

    Article  Google Scholar 

  14. Rieck, B., Mara, H., Leitte, H.: Multivariate data analysis using persistence-based filtering and topological signatures. IEEE Trans. Vis. Comput. Graph. 18(12), 2382–2391 (2012)

    Article  Google Scholar 

  15. Viscous fingering displacement. https://www.youtube.com/watch?v=NZEB8tQ3eOM

  16. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bastian Rieck or Heike Leitte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rieck, B., Sadlo, F., Leitte, H. (2020). Persistence Concepts for 2D Skeleton Evolution Analysis. In: Carr, H., Fujishiro, I., Sadlo, F., Takahashi, S. (eds) Topological Methods in Data Analysis and Visualization V. TopoInVis 2017. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-43036-8_9

Download citation

Publish with us

Policies and ethics