Abstract
Techniques from computational topology, in particular persistent homology, are becoming increasingly relevant for data analysis. Their stable metrics permit the use of many distance-based data analysis methods, such as multidimensional scaling, while providing a firm theoretical ground. Many modern machine learning algorithms, however, are based on kernels. This paper presents persistence indicator functions (PIFs), which summarize persistence diagrams, i.e., feature descriptors in topological data analysis. PIFs can be calculated and compared in linear time and have many beneficial properties, such as the availability of a kernel-based similarity measure. We demonstrate their usage in common data analysis scenarios, such as confidence set estimation and classification of complex structured data.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)
Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. Discr. Comput. Geom. 36(4), 553–572 (2006)
Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey (2014). https://arxiv.org/abs/1409.4734
Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004). https://doi.org/10.1109/TVCG.2004.3
Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015)
Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Singh, A., Wasserman, L.: On the bootstrap for persistence diagrams and landscapes. Model. Anal. Inf. Syst. 20(6), 111–120 (2013)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr. Comput. Geom. 37(1), 103–120 (2007)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, New York (2010)
Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European Congress of Mathematics. EMS Publishing House, Zürich (2014)
Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discr. Comput. Geom. 28(4), 511–533 (2002)
Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability, vol. 57 . Chapman & Hall/CRC, Boca Raton, FL (1993)
Günther, D., Boto, R.A., Contreras-Garcia, J., Piquemal, J.P., Tierny, J.: Characterizing molecular interactions in chemical systems. IEEE Trans. Vis. Comp. Graph. 20(12), 2476–2485 (2014)
Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. In: Goodrich, M., Mitzenmacher, M. (eds.) Proceedings of the 18th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 103–112. SIAM, Philadelphia, PA (2016)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the IJCAI, vol. 2, pp. 1137–1143 (1995)
Kosorok, M.R.: Introduction to Empirical Processes and Semiparametric Inference. Springer, New York, NY (2008)
Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph. 12(5), 1053–1060 (2006)
Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 248–255 (2004)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4741–4748. Curran Associates, Inc., Red Hook, NY (2015)
Rieck, B., Leitte, H.: Shall I compare thee to a network?—Visualizing the topological structure of Shakespeare’s plays. In: Workshop on Visualization for the Digital Humanities at IEEE VIS. Baltimore, MD (2016)
Rieck, B., Fugacci, U., Lukasczyk, J., Leitte, H.: Clique community persistence: a topological visual analysis approach for complex networks. IEEE Trans. Vis. Comput. Graph. 22(1), 822-831 (2018). https://doi.org/10.1109/TVCG.2017.2744321
Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge, MA (2002)
Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)
Sugiyama, M., Ghisu, M.E., Llinares-López, F., Borgwardt, K.: graphkernels: R and Python packages for graph comparison. Bioinformatics 34(3), 530–532 (2017)
Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discr. Comput. Geom. 52(1), 44–70 (2014)
Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374. ACM, New York, NY (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rieck, B., Sadlo, F., Leitte, H. (2020). Topological Machine Learning with Persistence Indicator Functions. In: Carr, H., Fujishiro, I., Sadlo, F., Takahashi, S. (eds) Topological Methods in Data Analysis and Visualization V. TopoInVis 2017. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-43036-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-43036-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43035-1
Online ISBN: 978-3-030-43036-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)