Skip to main content

Topological Machine Learning with Persistence Indicator Functions

Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Techniques from computational topology, in particular persistent homology, are becoming increasingly relevant for data analysis. Their stable metrics permit the use of many distance-based data analysis methods, such as multidimensional scaling, while providing a firm theoretical ground. Many modern machine learning algorithms, however, are based on kernels. This paper presents persistence indicator functions (PIFs), which summarize persistence diagrams, i.e., feature descriptors in topological data analysis. PIFs can be calculated and compared in linear time and have many beneficial properties, such as the availability of a kernel-based similarity measure. We demonstrate their usage in common data analysis scenarios, such as confidence set estimation and classification of complex structured data.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/Submanifold/topological-machine-learning.

References

  1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. Discr. Comput. Geom. 36(4), 553–572 (2006)

    CrossRef  MathSciNet  Google Scholar 

  3. Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey (2014). https://arxiv.org/abs/1409.4734

  4. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004). https://doi.org/10.1109/TVCG.2004.3

    CrossRef  Google Scholar 

  5. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Singh, A., Wasserman, L.: On the bootstrap for persistence diagrams and landscapes. Model. Anal. Inf. Syst. 20(6), 111–120 (2013)

    CrossRef  Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr. Comput. Geom. 37(1), 103–120 (2007)

    CrossRef  MathSciNet  Google Scholar 

  8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    CrossRef  MathSciNet  Google Scholar 

  9. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, New York (2010)

    MATH  Google Scholar 

  10. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European Congress of Mathematics. EMS Publishing House, Zürich (2014)

    Google Scholar 

  11. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discr. Comput. Geom. 28(4), 511–533 (2002)

    CrossRef  MathSciNet  Google Scholar 

  12. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability, vol. 57 . Chapman & Hall/CRC, Boca Raton, FL (1993)

    Google Scholar 

  13. Günther, D., Boto, R.A., Contreras-Garcia, J., Piquemal, J.P., Tierny, J.: Characterizing molecular interactions in chemical systems. IEEE Trans. Vis. Comp. Graph. 20(12), 2476–2485 (2014)

    CrossRef  Google Scholar 

  14. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. In: Goodrich, M., Mitzenmacher, M. (eds.) Proceedings of the 18th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 103–112. SIAM, Philadelphia, PA (2016)

    Google Scholar 

  15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the IJCAI, vol. 2, pp. 1137–1143 (1995)

    Google Scholar 

  16. Kosorok, M.R.: Introduction to Empirical Processes and Semiparametric Inference. Springer, New York, NY (2008)

    CrossRef  Google Scholar 

  17. Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph. 12(5), 1053–1060 (2006)

    CrossRef  Google Scholar 

  18. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 248–255 (2004)

    Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  20. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4741–4748. Curran Associates, Inc., Red Hook, NY (2015)

    Google Scholar 

  21. Rieck, B., Leitte, H.: Shall I compare thee to a network?—Visualizing the topological structure of Shakespeare’s plays. In: Workshop on Visualization for the Digital Humanities at IEEE VIS. Baltimore, MD (2016)

    Google Scholar 

  22. Rieck, B., Fugacci, U., Lukasczyk, J., Leitte, H.: Clique community persistence: a topological visual analysis approach for complex networks. IEEE Trans. Vis. Comput. Graph. 22(1), 822-831 (2018). https://doi.org/10.1109/TVCG.2017.2744321

    CrossRef  Google Scholar 

  23. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge, MA (2002)

    MATH  Google Scholar 

  24. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    CrossRef  Google Scholar 

  25. Sugiyama, M., Ghisu, M.E., Llinares-López, F., Borgwardt, K.: graphkernels: R and Python packages for graph comparison. Bioinformatics 34(3), 530–532 (2017)

    Google Scholar 

  26. Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discr. Comput. Geom. 52(1), 44–70 (2014)

    CrossRef  Google Scholar 

  27. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374. ACM, New York, NY (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Rieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rieck, B., Sadlo, F., Leitte, H. (2020). Topological Machine Learning with Persistence Indicator Functions. In: Carr, H., Fujishiro, I., Sadlo, F., Takahashi, S. (eds) Topological Methods in Data Analysis and Visualization V. TopoInVis 2017. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-43036-8_6

Download citation