Skip to main content

Acid, Base and the Kidneys: The Role of the Kidneys in Acid-Base Disorders

  • Chapter
  • First Online:
Understanding Kidney Diseases

Abstract

In this chapter we explain:

  • Normal acid-base chemistry and homeostasis

  • How the kidneys regulate serum bicarbonate and acid excretion

  • How to interpret acid-base laboratory results

  • Different types of acidosis

  • Renal tubular acidosis

  • Acidosis in chronic kidney disease

  • Metabolic alkalosis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly AM. Review article: can venous blood gas analysis replace arterial in emergency medical care. Emerg Med Australas. 2010;22:493–8. https://doi.org/10.1111/j.1742-6723.2010.01344.x.

    Article  PubMed  Google Scholar 

  2. Hamm LL, Nakhoul N, Hering-Smith KS. Acid-base homeostasis. Clin J Am Soc Nephrol. 2015;10:2232–42. https://cjasn.asnjournals.org/content/10/12/2232.long.

    Article  CAS  Google Scholar 

  3. Berend K. Diagnostic use of base excess in acid-base disorders. N Engl J Med. 2018;378:1419–28. https://doi.org/10.1056/NEJMra1711860.

    Article  CAS  PubMed  Google Scholar 

  4. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007;2(1):162–74. https://doi.org/10.2215/CJN.03020906. https://cjasn.asnjournals.org/content/2/1/162.

    Article  CAS  PubMed  Google Scholar 

  5. Batlle D, Ba Aqeel SH, Marquez A. The urine anion gap in context. Clin J Am Soc Nephrol. 2018;13:195–7. https://doi.org/10.2215/CJN.13791217. https://cjasn.asnjournals.org/content/clinjasn/13/2/195.full.pdf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rastegar M, Nagami GT. Non-anion gap metabolic acidosis: a clinical approach to evaluation. Am J Kidney Dis. 2017;69:296–301. https://www.ajkd.org/article/S0272-6386(16)30515-7/fulltext.

    Article  CAS  Google Scholar 

  7. Rodriguez SJ. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13:2160–70. https://jasn.asnjournals.org/content/13/8/2160.

    Article  Google Scholar 

  8. Soleimani M, Rastegar A. Pathophysiology of renal tubular acidosis: core curriculum 2016. Am J Kidney Dis. 2016;68:488–98. https://www.ajkd.org/article/S0272-6386(16)30039-7/fulltext.

    Article  Google Scholar 

  9. Kashoor I, Batlle D. Proximal renal tubular acidosis with and without Fanconi syndrome. Kidney Res Clin Pract. 2019;38:267–81. http://www.krcp-ksn.org/journal/view.html?doi=10.23876/j.krcp.19.056.

    Article  Google Scholar 

  10. Batlle D, Arruda J. Hyperkalemic forms of renal tubular acidosis: clinical and pathophysiological aspects. Adv Chronic Kidney Dis. 2018;25:321–33. https://www.ackdjournal.org/article/S1548-5595(18)30100-9/fulltext.

    Article  Google Scholar 

  11. Mehta AN, Emmett JB, Emmett M. GOLD MARK: An anion gap mnemonic for the 21st century. Lancet. 2008;372(9642):892. https://doi.org/10.1016/S0140-6736(08)61398-7. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(08)61398-7/fulltext.

    Article  PubMed  Google Scholar 

  12. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371:2309–19. https://doi.org/10.1056/NEJMra1309483. https://www.nejm.org/doi/full/10.1056/NEJMra1309483.

    Article  CAS  PubMed  Google Scholar 

  13. Misra S, Oliver NS. Diabetic ketoacidosis in adults. BMJ. 2015;351:h5660. https://www.bmj.com/content/351/bmj.h5660.long.

    Article  Google Scholar 

  14. Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RJ. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol. 2006;17(3):617–26. https://doi.org/10.1681/ASN.2005070732. https://jasn.asnjournals.org/content/17/3/617.long.

    Article  CAS  PubMed  Google Scholar 

  15. Hunter RW, Lawson C, Galitsiou E, Gifford F, Neary JJ. Pyroglutamic acidosis in association with therapeutic paracetamol (acetaminophen) use. Clin Med (Lond). 2016;16(6):524–9. https://doi.org/10.7861/clinmedicine.16-6-524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297337/.

    Article  Google Scholar 

  16. Amorim JBO, Bailey MA, Musa-Aziz R, Giebisch G, Malnic G. Role of luminal anion and pH in distal tubule potassium secretion. Am J Physiol Renal Physiol. 2003;284:F381–8. https://doi.org/10.1152/ajprenal.00236.2002.

    Article  CAS  PubMed  Google Scholar 

  17. Goraya N, Simoni J, Sager LN, Pruszynski J, Wesson DE. Acid retention in chronic kidney disease is inversely related to GFR. Am J Physiol Renal Physiol. 2018;314:F985–91. https://doi.org/10.1152/ajprenal.00463.2017.

    Article  CAS  PubMed  Google Scholar 

  18. Abramowitz MK, Hostetter TH, Melamed ML. The plasma anion gap is altered in early kidney disease and associates with mortality. Kidney Int. 2012;82(6):701–9. https://doi.org/10.1038/ki.2012.196. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434284/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moranne O, Froissart M, Rossert J, et al. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009;20:164–71. https://jasn.asnjournals.org/content/20/1/164.long.

    Article  Google Scholar 

  20. Dobre M, Rahman M, Hostetter TH. Current status of bicarbonate in CKD. J Am Soc Nephrol. 2015;26:515–23. https://doi.org/10.1681/ASN.2014020205. http://jasn.asnjournals.org/content/26/3/515.abstract.

    Article  CAS  PubMed  Google Scholar 

  21. Wesson DE, Mathur V, Tangri N, Stasiv Y, Parsell D, Li E, et al. Veverimer versus placebo in patients with metabolic acidosis associated with chronic kidney disease: a multicentre, randomised, double-blind, controlled, phase 3 trial. Lancet. 2019;393(10179):P1417–27. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32562-5/fulltext?dgcid=raven_jbs_etoc_email.

    Article  Google Scholar 

  22. Navaneethan SD, Shao J, Buysse J, Bushinsky DA. Effects of treatment of metabolic acidosis in CKD: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2019;14(7):1011–20. https://cjasn.asnjournals.org/content/early/2019/06/12/CJN.13091118.abstract.

    Article  Google Scholar 

  23. Di Iorio BR, Bellasi A, Raphael KL, Santoro D, Aucella F, Garofano L, Ceccarelli M, Di Lullo L, Capolongo G, Di Iorio M, Guastaferro P, Capasso G, The UBI Study Group. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: the UBI Study. J Nephrol. 2019;32(6):989–1001. https://doi.org/10.1007/s40620-019-00656-5. https://link.springer.com/article/10.1007/s40620-019-00656-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goraya N, Simoni J, Jo C-H, Wesson DE. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014;86:1031–8. https://doi.org/10.1038/ki.2014.83. http://www.nature.com/ki/journal/v86/n5/full/ki201483a.html.

    Article  CAS  PubMed  Google Scholar 

  25. Dubey AK, Sahoo J, Vairappan B, Haridasan S, Parameswaran S, Priyamvada PS. Correction of metabolic acidosis improves muscle mass and renal function in chronic kidney disease stages 3 and 4: a randomized controlled trial. Nephrol Dial Transplant. 2020;35(1):121–9. https://doi.org/10.1093/ndt/gfy214.

    Article  PubMed  Google Scholar 

  26. Wesson DE, Mathur V, Tangri N, Stasiv Y, Parsell D, Li E, Klaerner G, Bushinsky DA. Long-term safety and efficacy of veverimer in patients with metabolic acidosis in chronic kidney disease: a multicentre, randomised, blinded, placebo-controlled, 40-week extension. Lancet. 2019;394(10196):P396–406. https://doi.org/10.1016/S0140-6736(19)31388-1. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)31388-1/fulltext.

    Article  Google Scholar 

  27. Saldana TM, Basso O, Darden R, Sandler DP. Carbonated beverages and chronic kidney disease. Epidemiology. 2007;18(4):501–6. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433753/.

    Article  Google Scholar 

  28. Galla JH. Metabolic alkalosis. J Am Soc Nephrol. 2000;11:369–75. https://jasn.asnjournals.org/content/11/2/369.long.

    CAS  PubMed  Google Scholar 

  29. Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol. 2012;23:204–7. https://jasn.asnjournals.org/content/23/2/204.long.

    Article  CAS  Google Scholar 

  30. Soifer JT, Kim HT. Approach to metabolic alkalosis. Emerg Med Clin North Am. 2014;32:453–63. https://www.sciencedirect.com/science/article/abs/pii/S0733862714000066?via%3Dihub.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rayner, H.C., Thomas, M.E., Milford, D.V. (2020). Acid, Base and the Kidneys: The Role of the Kidneys in Acid-Base Disorders. In: Understanding Kidney Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-43027-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43027-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43026-9

  • Online ISBN: 978-3-030-43027-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics