Abstract
Markovian Arrival Processes (MAPs) are widely used stochastic models to describe correlated events. For the parameter fitting of MAPs according to measured data, the expectation-maximization (EM) algorithm is commonly seen as the best approach. Unfortunately, EM algorithms require a huge computational effort if the number of data points is large or the MAP has a larger dimension. The classical EM algorithm runs sequentially through the data which is necessary to consider dependencies between data points.
In this paper we present a parallel variant of the EM algorithm for MAPs with a general structure. The parallel version of the algorithm is developed for multicore systems with shared memory. It is shown that the parallel algorithm yields a significant speedup compared to its sequential counterpart.
Keywords
- Markovian Arrival Process
- EM algorithm
- Parallel algorithms
- Traffic modeling
This is a preview of subscription content, access via your institution.
Buying options
References
The internet traffic archive. http://ita.ee.lbl.gov/
The parmap software. https://github.com/minbraz/parmap/
Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM-algorithm. Scand. J. Stat. 23(4), 419–441 (1996)
Bause, F., Buchholz, P., Kriege, J.: ProFiDo - the processes fitting toolkit Dortmund. In: QEST 2010, Seventh International Conference on the Quantitative Evaluation of Systems, Williamsburg, Virginia, USA, 15–18 September 2010, pp. 87–96. IEEE Computer Society (2010)
Blume, A.: Parallelisierung von Methoden zur Parameteranpassung von MAPs. Master’s thesis, Fakultät für Informatik, TU Dortmund (2019)
Brazenas, M., Horvath, G., Telek, M.: Parallel algorithms for fitting Markov arrival processes. Perform. Eval. 123–124, 50–67 (2018)
Breuer, L.: An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann. OR 112(1–4), 123–138 (2002)
Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 218–236. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45232-4_14
Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and their parameter fitting. Perform. Eval. 67(11), 1092–1106 (2010)
Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models - Theory and Applications. Springer, New York (2014)
Casale, G.: Building accurate workload models using Markovian arrival processes. In: Merchant, A., Keeton, K., Rubenstein, D. (eds.) Proceedings of the 2011 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems SIGMETRICS 2011, San Jose, CA, USA, 07–11 June 2011 (Co-located with FCRC 2011), pp. 357–358. ACM (2011)
Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: simple yet effective trace fitting using Markovian arrival processes. In: QEST, pp. 83–92 (2008)
Fox, B.L., Glynn, P.W.: Computing poisson probabilities. Commun. ACM 31(4), 440–445 (1988)
Horváth, G., Okamura, H.: A fast EM algorithm for fitting marked markovian arrival processes with a new special structure. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 119–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40725-3_10
Horváth, G., Telek, M., Buchholz, P.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag-correlation. In: QEST, pp. 124–133. IEEE CS Press (2005)
Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)
Kriege, J., Buchholz, P.: An empirical comparison of MAP fitting algorithms. In: Müller-Clostermann, B., Echtle, K., Rathgeb, E.P. (eds.) MMB&DFT 2010. LNCS, vol. 5987, pp. 259–273. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12104-3_20
Kriege, J., Buchholz, P.: PH and MAP fitting with aggregated traffic traces. In: Fischbach, K., Krieger, U.R. (eds.) MMB&DFT 2014. LNCS, vol. 8376, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05359-2_1
Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)
Lucantoni, D.M., Meier-Hellstern, K.S., Neuts, M.F.: A single-server queue with server vacations and a class of non-renewal arrival processes. Adv. Appl. Probab. 22(3), 676–705 (1990)
Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779 (1979)
Okamura, H., Dohi, T.: Faster maximum likelihood estimation algorithms for Markovian arrival processes. In: 2009 Sixth International Conference on the Quantitative Evaluation of Systems, pp. 73–82, September 2009
Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Perform. Eval. 68(10), 938–954 (2011)
Panchenko, A., Thümmler, A.: Efficient phase-type fitting with aggregated traffic traces. Perform. Eval. 64(7–8), 629–645 (2007)
Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)
Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Dep. Sec. Comput. 3(3), 245–258 (2006)
Wu, C., Yang, C., Zhao, H., Zhu, J.: On the convergence of the EM algorithm: a data-adaptive analysis (2016)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Blume, A., Buchholz, P., Kriege, J. (2020). Parallelization of EM-Algorithms for Markovian Arrival Processes. In: Hermanns, H. (eds) Measurement, Modelling and Evaluation of Computing Systems. MMB 2020. Lecture Notes in Computer Science(), vol 12040. Springer, Cham. https://doi.org/10.1007/978-3-030-43024-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-43024-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43023-8
Online ISBN: 978-3-030-43024-5
eBook Packages: Computer ScienceComputer Science (R0)