Skip to main content

Parallelization of EM-Algorithms for Markovian Arrival Processes

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 12040)

Abstract

Markovian Arrival Processes (MAPs) are widely used stochastic models to describe correlated events. For the parameter fitting of MAPs according to measured data, the expectation-maximization (EM) algorithm is commonly seen as the best approach. Unfortunately, EM algorithms require a huge computational effort if the number of data points is large or the MAP has a larger dimension. The classical EM algorithm runs sequentially through the data which is necessary to consider dependencies between data points.

In this paper we present a parallel variant of the EM algorithm for MAPs with a general structure. The parallel version of the algorithm is developed for multicore systems with shared memory. It is shown that the parallel algorithm yields a significant speedup compared to its sequential counterpart.

Keywords

  • Markovian Arrival Process
  • EM algorithm
  • Parallel algorithms
  • Traffic modeling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-43024-5_11
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-43024-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

References

  1. The internet traffic archive. http://ita.ee.lbl.gov/

  2. The parmap software. https://github.com/minbraz/parmap/

  3. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM-algorithm. Scand. J. Stat. 23(4), 419–441 (1996)

    MATH  Google Scholar 

  4. Bause, F., Buchholz, P., Kriege, J.: ProFiDo - the processes fitting toolkit Dortmund. In: QEST 2010, Seventh International Conference on the Quantitative Evaluation of Systems, Williamsburg, Virginia, USA, 15–18 September 2010, pp. 87–96. IEEE Computer Society (2010)

    Google Scholar 

  5. Blume, A.: Parallelisierung von Methoden zur Parameteranpassung von MAPs. Master’s thesis, Fakultät für Informatik, TU Dortmund (2019)

    Google Scholar 

  6. Brazenas, M., Horvath, G., Telek, M.: Parallel algorithms for fitting Markov arrival processes. Perform. Eval. 123–124, 50–67 (2018)

    CrossRef  Google Scholar 

  7. Breuer, L.: An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann. OR 112(1–4), 123–138 (2002)

    CrossRef  MathSciNet  Google Scholar 

  8. Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 218–236. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45232-4_14

    CrossRef  Google Scholar 

  9. Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and their parameter fitting. Perform. Eval. 67(11), 1092–1106 (2010)

    CrossRef  Google Scholar 

  10. Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models - Theory and Applications. Springer, New York (2014)

    CrossRef  Google Scholar 

  11. Casale, G.: Building accurate workload models using Markovian arrival processes. In: Merchant, A., Keeton, K., Rubenstein, D. (eds.) Proceedings of the 2011 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems SIGMETRICS 2011, San Jose, CA, USA, 07–11 June 2011 (Co-located with FCRC 2011), pp. 357–358. ACM (2011)

    Google Scholar 

  12. Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: simple yet effective trace fitting using Markovian arrival processes. In: QEST, pp. 83–92 (2008)

    Google Scholar 

  13. Fox, B.L., Glynn, P.W.: Computing poisson probabilities. Commun. ACM 31(4), 440–445 (1988)

    CrossRef  MathSciNet  Google Scholar 

  14. Horváth, G., Okamura, H.: A fast EM algorithm for fitting marked markovian arrival processes with a new special structure. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 119–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40725-3_10

    CrossRef  Google Scholar 

  15. Horváth, G., Telek, M., Buchholz, P.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag-correlation. In: QEST, pp. 124–133. IEEE CS Press (2005)

    Google Scholar 

  16. Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)

    CrossRef  Google Scholar 

  17. Kriege, J., Buchholz, P.: An empirical comparison of MAP fitting algorithms. In: Müller-Clostermann, B., Echtle, K., Rathgeb, E.P. (eds.) MMB&DFT 2010. LNCS, vol. 5987, pp. 259–273. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12104-3_20

    CrossRef  Google Scholar 

  18. Kriege, J., Buchholz, P.: PH and MAP fitting with aggregated traffic traces. In: Fischbach, K., Krieger, U.R. (eds.) MMB&DFT 2014. LNCS, vol. 8376, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05359-2_1

    CrossRef  Google Scholar 

  19. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)

    CrossRef  MathSciNet  Google Scholar 

  20. Lucantoni, D.M., Meier-Hellstern, K.S., Neuts, M.F.: A single-server queue with server vacations and a class of non-renewal arrival processes. Adv. Appl. Probab. 22(3), 676–705 (1990)

    CrossRef  MathSciNet  Google Scholar 

  21. Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779 (1979)

    CrossRef  MathSciNet  Google Scholar 

  22. Okamura, H., Dohi, T.: Faster maximum likelihood estimation algorithms for Markovian arrival processes. In: 2009 Sixth International Conference on the Quantitative Evaluation of Systems, pp. 73–82, September 2009

    Google Scholar 

  23. Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Perform. Eval. 68(10), 938–954 (2011)

    CrossRef  Google Scholar 

  24. Panchenko, A., Thümmler, A.: Efficient phase-type fitting with aggregated traffic traces. Perform. Eval. 64(7–8), 629–645 (2007)

    CrossRef  Google Scholar 

  25. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  26. Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Dep. Sec. Comput. 3(3), 245–258 (2006)

    CrossRef  Google Scholar 

  27. Wu, C., Yang, C., Zhao, H., Zhu, J.: On the convergence of the EM algorithm: a data-adaptive analysis (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Blume or Peter Buchholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Blume, A., Buchholz, P., Kriege, J. (2020). Parallelization of EM-Algorithms for Markovian Arrival Processes. In: Hermanns, H. (eds) Measurement, Modelling and Evaluation of Computing Systems. MMB 2020. Lecture Notes in Computer Science(), vol 12040. Springer, Cham. https://doi.org/10.1007/978-3-030-43024-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43024-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43023-8

  • Online ISBN: 978-3-030-43024-5

  • eBook Packages: Computer ScienceComputer Science (R0)