Skip to main content

Cellular Senescence in Aging Mucosal Tissues Is Accentuated by Periodontitis

  • Chapter
  • First Online:
Book cover Emerging Therapies in Periodontics
  • 622 Accesses

Abstract

Understanding the biologic mechanisms that cause declines in cellular, tissue, and organ functions is a strategy to enhance a healthy aging process. The biology of aging is impacted by both environmental and genetic factors that pre-dispose to variation in the rate of senescence across the population, with extensive variation in aging effects at the individual subject level. These findings are consistent with broader health data demonstrating that aging is accompanied by increased susceptibility to autoimmune, infectious, and inflammatory diseases, including periodontitis. The interdisciplinary implementation of investigations in geroscience addresses aging in the context of chronic age–related diseases and geriatric syndromes. A component aspect underlying these interrelationships is the evolving area of biologic aging to better describe and predict an individual rate of senescence based upon arrays of intrinsic and extrinsic variables that could more effectively model the kinetics of appearance and progression of age-related diseases. This has led to evolving strategies for the development of geroprotective and senolytic therapeutics to enhance healthy aging. This report provides data regarding cellular senescence patterns in gingival tissues with healthy aging and periodontitis. It also proposes that this chronic widespread disease may not simply reflect aging processes by also being a detrimental factor for “gerovulnerability” that should advance new insights into the importance of prevention/treatment of periodontitis with the overall composite of healthy aging strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cristofalo VJ, Pignolo RJ. Replicative senescence of human fibroblast-like cells in culture. Physiol Rev. 1993;73(3):617–38.

    PubMed  Google Scholar 

  2. Phipps SM, Berletch JB, Andrews LG, Tollefsbol TO. Aging cell culture: methods and observations. Methods Mol Biol. 2007;371:9–19.

    PubMed  PubMed Central  Google Scholar 

  3. Witkowksi JA. Cell aging in vitro: a historical perspective. Exp Gerontol. 1987;22(4):231–48.

    PubMed  Google Scholar 

  4. Hastings WJ, Shalev I, Belsky DW. Translating measures of biological aging to test effectiveness of geroprotective interventions: what can we learn from research on telomeres? Front Genet. 2017;8:164.

    PubMed  PubMed Central  Google Scholar 

  5. Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology. 2012;13(2):119–31.

    PubMed  Google Scholar 

  6. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003;13(17):1549–56.

    PubMed  Google Scholar 

  7. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004;14(4):501–13.

    PubMed  Google Scholar 

  8. Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J. Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol. 2005;37(5):977–90.

    PubMed  Google Scholar 

  9. Campisi J, Kim SH, Lim CS, Rubio M. Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol. 2001;36(10):1619–37.

    PubMed  Google Scholar 

  10. Serrano M, Blasco MA. Putting the stress on senescence. Curr Opin Cell Biol. 2001;13(6):748–53.

    PubMed  Google Scholar 

  11. Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.

    PubMed  Google Scholar 

  12. Shay JW, Roninson IB. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene. 2004;23(16):2919–33.

    PubMed  Google Scholar 

  13. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.

    PubMed  Google Scholar 

  14. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    PubMed  Google Scholar 

  15. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–33.

    PubMed  Google Scholar 

  16. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602.

    PubMed  Google Scholar 

  17. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 1998;12(19):3008–19.

    PubMed  PubMed Central  Google Scholar 

  18. Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 1998;12(19):2997–3007.

    PubMed  PubMed Central  Google Scholar 

  19. Dimri GP, Itahana K, Acosta M, Campisi J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol. 2000;20(1):273–85.

    PubMed  PubMed Central  Google Scholar 

  20. Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L. Oxidative stress, inflamm-aging and immunosenescence. J Proteome. 2011;74(11):2313–23.

    Google Scholar 

  21. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499–506.

    PubMed  Google Scholar 

  22. Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res. 2004;295(2):525–38.

    PubMed  Google Scholar 

  23. Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol. 1996;16(9):5210–8.

    PubMed  PubMed Central  Google Scholar 

  24. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009–2012. J Periodontol. 2015;86(5):611–22.

    PubMed  PubMed Central  Google Scholar 

  25. Baelum V, Lopez R. Periodontal disease epidemiology—learned and unlearned? Periodontol 2000. 2013;62(1):37–58.

    PubMed  Google Scholar 

  26. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Cdc periodontal disease surveillance workgroup: James Beck GDRP. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20.

    PubMed  Google Scholar 

  27. Eke PI, Zhang X, Lu H, Wei L, Thornton-Evans G, Greenlund KJ, et al. Predicting periodontitis at state and local levels in the United States. J Dent Res. 2016;95(5):515–22.

    PubMed  PubMed Central  Google Scholar 

  28. Hajishengallis G. Too old to fight? Aging and its toll on innate immunity. Mol Oral Microbiol. 2010;25(1):25–37.

    PubMed  PubMed Central  Google Scholar 

  29. Huttner EA, Machado DC, de Oliveira RB, Antunes AG, Hebling E. Effects of human aging on periodontal tissues. Spec Care Dentist. 2009;29(4):149–55.

    PubMed  Google Scholar 

  30. Kornman KS. Interleukin 1 genetics, inflammatory mechanisms, and nutrigenetic opportunities to modulate diseases of aging. Am J Clin Nutr. 2006;83(2):475S–83S.

    PubMed  Google Scholar 

  31. Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22.

    PubMed  Google Scholar 

  32. Wu Y, Dong G, Xiao W, Xiao E, Miao F, Syverson A, et al. Effect of aging on periodontal inflammation, microbial colonization, and disease susceptibility. J Dent Res. 2016;95(4):460–6.

    PubMed  PubMed Central  Google Scholar 

  33. Lamster IB, Asadourian L, Del Carmen T, Friedman PK. The aging mouth: differentiating normal aging from disease. Periodontol 2000. 2016;72(1):96–107.

    PubMed  Google Scholar 

  34. Lamster IB. Geriatric periodontology: how the need to care for the aging population can influence the future of the dental profession. Periodontol 2000. 2016;72(1):7–12.

    PubMed  Google Scholar 

  35. Ebersole JL, Dawson D 3rd, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, et al. The periodontal war: microbes and immunity. Periodontol 2000. 2017;75(1):52–115.

    PubMed  Google Scholar 

  36. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11.

    PubMed  Google Scholar 

  37. Papapanou PN, Susin C. Periodontitis epidemiology: is periodontitis under-recognized, over-diagnosed, or both? Periodontol 2000. 2017;75(1):45–51.

    PubMed  Google Scholar 

  38. Reynolds MA. Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol 2000. 2014;64(1):7–19.

    PubMed  Google Scholar 

  39. Ebersole JL, Dawson DAI, Emecen Huja P, Pandruvada S, Basu A, Nguyen L, et al. Age and periodontal health - immunological view. Curr Oral Health Rep. 2018;5(4):229–41.

    PubMed  PubMed Central  Google Scholar 

  40. Schou S, Holmstrup P, Kornman KS. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol. 1993;64(6):497–508.

    PubMed  Google Scholar 

  41. Madden TE, Caton JG. Animal models for periodontal disease. Methods Enzymol. 1994;235:106–19.

    PubMed  Google Scholar 

  42. Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr. Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol. 2012;15:117–32.

    PubMed  Google Scholar 

  43. Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotechnol. 2011;2011:754857.

    PubMed  PubMed Central  Google Scholar 

  44. Holt SC, Ebersole J, Felton J, Brunsvold M, Kornman KS. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 1988;239(4835):55–7.

    PubMed  Google Scholar 

  45. Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. Aging in rhesus monkeys: relevance to human health interventions. Science. 2004;305(5689):1423–6.

    PubMed  Google Scholar 

  46. Gonzalez OA, Kirakodu S, Novak MJ, Stromberg AJ, Orraca L, Gonzalez-Martinez J, et al. Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology. 2018;223(3):279–87.

    PubMed  Google Scholar 

  47. Ferrin J, Kirakodu S, Jensen D, Al-Attar A, Peyyala R, Novak MJ, et al. Gene expression analysis of neuropeptides in oral mucosa during periodontal disease in non-human primates. J Periodontol. 2018;89:858.

    PubMed  PubMed Central  Google Scholar 

  48. Ebersole JL, Novak MJ, Orraca L, Martinez-Gonzalez J, Kirakodu S, Chen KC, et al. Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology. 2018;154(3):452–64.

    PubMed  PubMed Central  Google Scholar 

  49. Pandruvada SN, Gonzalez OA, Kirakodu S, Gudhimella S, Stromberg AJ, Ebersole JL, et al. Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. J Clin Periodontol. 2016;43(5):408–17.

    PubMed  PubMed Central  Google Scholar 

  50. Gonzalez OA, Nagarajan R, Novak MJ, Orraca L, Gonzalez-Martinez JA, Kirakodu SS, et al. Immune system transcriptome in gingival tissues of young nonhuman primates. J Periodontal Res. 2016;51(2):152–63.

    PubMed  Google Scholar 

  51. Ebersole JL, Kirakodu SS, Novak MJ, Orraca L, Martinez JG, Cunningham LL, et al. Transcriptome analysis of B cell immune functions in periodontitis: mucosal tissue responses to the oral microbiome in aging. Front Immunol. 2016;7:272.

    PubMed  PubMed Central  Google Scholar 

  52. Ebersole JL, Kirakodu S, Novak MJ, Exposto CR, Stromberg AJ, Shen S, et al. Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. Mol Oral Microbiol. 2016;31(1):18–32.

    PubMed  Google Scholar 

  53. Gonzalez OA, Novak MJ, Kirakodu S, Stromberg A, Nagarajan R, Huang CB, et al. Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues. Immunol Investig. 2015;44(7):643–64.

    Google Scholar 

  54. Gonzalez OA, Novak MJ, Kirakodu S, Orraca L, Chen KC, Stromberg A, et al. Comparative analysis of gingival tissue antigen presentation pathways in ageing and periodontitis. J Clin Periodontol. 2014;41(4):327–39.

    PubMed  PubMed Central  Google Scholar 

  55. Ebersole JL, Kirakodu S, Novak MJ, Stromberg AJ, Shen S, Orraca L, et al. Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. J Clin Periodontol. 2014;41(9):853–61.

    PubMed  PubMed Central  Google Scholar 

  56. Gonzalez OA, John Novak M, Kirakodu S, Stromberg AJ, Shen S, Orraca L, et al. Effects of aging on apoptosis gene expression in oral mucosal tissues. Apoptosis. 2013;18(3):249–59.

    PubMed  PubMed Central  Google Scholar 

  57. Gonzalez OA, Stromberg AJ, Huggins PM, Gonzalez-Martinez J, Novak MJ, Ebersole JL. Apoptotic genes are differentially expressed in aged gingival tissue. J Dent Res. 2011;90(7):880–6.

    PubMed  PubMed Central  Google Scholar 

  58. Kim S, Jazwinski SM. Quantitative measures of healthy aging and biological age. Healthy Aging Res. 2015;4:26.

    Google Scholar 

  59. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192(4):547–56.

    PubMed  PubMed Central  Google Scholar 

  60. Giaimo S, d’Adda di Fagagna F. Is cellular senescence an example of antagonistic pleiotropy? Aging Cell. 2012;11(3):378–83.

    PubMed  Google Scholar 

  61. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne). 2018;5:61.

    Google Scholar 

  62. Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2018;187(6):1220–30.

    PubMed  Google Scholar 

  63. Maffei VJ, Kim S, Blanchard E, Luo M, Jazwinski SM, Taylor CM, et al. Biological aging and the human gut microbiota. J Gerontol A Biol Sci Med Sci. 2017;72(11):1474–82.

    PubMed  PubMed Central  Google Scholar 

  64. Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE biobank analysis. J Gerontol A Biol Sci Med Sci. 2017;73(1):4–10.

    PubMed  PubMed Central  Google Scholar 

  65. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 2015;112(30):E4104–10.

    PubMed  PubMed Central  Google Scholar 

  66. Gurau F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procopio AD, et al. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res Rev. 2018;46:14–31.

    PubMed  Google Scholar 

  67. Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch. 2017;469(9):1051–9.

    PubMed  Google Scholar 

  68. Saraswat K, Rizvi SI. Novel strategies for anti-aging drug discovery. Expert Opin Drug Discov. 2017;12(9):955–66.

    PubMed  Google Scholar 

  69. Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M. Geroprotectors: a unified concept and screening approaches. Aging Dis. 2017;8(3):354–63.

    PubMed  PubMed Central  Google Scholar 

  70. Bulterijs S. Metformin as a geroprotector. Rejuvenation Res. 2011;14(5):469–82.

    PubMed  Google Scholar 

  71. Vaiserman AM. Epigenetic engineering and its possible role in anti-aging intervention. Rejuvenation Res. 2008;11(1):39–42.

    PubMed  Google Scholar 

  72. Roth GS, Lane MA, Ingram DK. Caloric restriction mimetics: the next phase. Ann N Y Acad Sci. 2005;1057:365–71.

    PubMed  Google Scholar 

  73. Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003;78(3):361–9.

    PubMed  Google Scholar 

  74. Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets. 2015;15(3):196–205.

    PubMed  Google Scholar 

  75. Onat A. Metabolic syndrome: nature, therapeutic solutions and options. Expert Opin Pharmacother. 2011;12(12):1887–900.

    PubMed  Google Scholar 

  76. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10(4):573–91.

    PubMed  PubMed Central  Google Scholar 

  77. Jazwinski SM, Kim S. Metabolic and genetic markers of biological age. Front Genet. 2017;8:64.

    PubMed  PubMed Central  Google Scholar 

  78. Tower J. Programmed cell death in aging. Ageing Res Rev. 2015;23(Pt A):90–100.

    PubMed  PubMed Central  Google Scholar 

  79. Gabbita SP, Butterfield DA, Hensley K, Shaw W, Carney JM. Aging and caloric restriction affect mitochondrial respiration and lipid membrane status: an electron paramagnetic resonance investigation. Free Radic Biol Med. 1997;23(2):191–201.

    PubMed  Google Scholar 

  80. Hipkiss AR, Baye E, de Courten B. Carnosine and the processes of ageing. Maturitas. 2016;93:28–33.

    PubMed  Google Scholar 

  81. Cararo JH, Streck EL, Schuck PF, Ferreira GC. Carnosine and related peptides: therapeutic potential in age-related disorders. Aging Dis. 2015;6(5):369–79.

    PubMed  PubMed Central  Google Scholar 

  82. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803–45.

    PubMed  Google Scholar 

  83. Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16(10):593–610.

    PubMed  PubMed Central  Google Scholar 

  84. Booth LN, Brunet A. The aging epigenome. Mol Cell. 2016;62(5):728–44.

    PubMed  PubMed Central  Google Scholar 

  85. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166(4):822–39.

    PubMed  PubMed Central  Google Scholar 

  86. Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC. Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 2014;10(3):469–78.

    PubMed  Google Scholar 

  87. Seroude L. Differential gene expression and aging. ScientificWorldJournal. 2002;2:618–31.

    PubMed  PubMed Central  Google Scholar 

  88. Kourtis N, Tavernarakis N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 2011;30(13):2520–31.

    PubMed  PubMed Central  Google Scholar 

  89. Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.

    PubMed  PubMed Central  Google Scholar 

  90. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    PubMed  PubMed Central  Google Scholar 

  91. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9.

    PubMed  PubMed Central  Google Scholar 

  92. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6.

    PubMed  PubMed Central  Google Scholar 

  93. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.

    PubMed  Google Scholar 

  94. Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34.

    PubMed  Google Scholar 

  95. Wei W, Ji S. Cellular senescence: molecular mechanisms and pathogenicity. J Cell Physiol. 2018;233(12):9121–35.

    PubMed  Google Scholar 

  96. Leontieva OV, Blagosklonny MV. Gerosuppression by pan-mTOR inhibitors. Aging. 2016;8(12):3535–51.

    PubMed  PubMed Central  Google Scholar 

  97. Savage N. New tricks from old dogs join the fight against ageing. Nature. 2017;552(7684):S57–S9.

    PubMed  Google Scholar 

  98. Blagosklonny MV. From rapalogs to anti-aging formula. Oncotarget. 2017;8(22):35492–507.

    PubMed  PubMed Central  Google Scholar 

  99. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):268ra179.

    PubMed  Google Scholar 

  100. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58.

    PubMed  PubMed Central  Google Scholar 

  101. Zhu Y, Pan L, Hong M, Liu W, Qiao C, Li J, et al. The combination therapy of imatinib and dasatinib achieves long-term molecular response in two imatinib-resistant and dasatinibin-tolerant patients with advanced chronic myeloid leukemia. J Biomed Res. 2016;30(6):525–8.

    Google Scholar 

  102. Kirkland JL, Tchkonia T. Clinical strategies and animal models for developing senolytic agents. Exp Gerontol. 2015;68:19–25.

    PubMed  Google Scholar 

  103. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72.

    PubMed  PubMed Central  Google Scholar 

  104. Harvey SA, Jensen KO, Elmore LW, Holt SE. Pharmacological approaches to defining the role of chaperones in aging and prostate cancer progression. Cell Stress Chaperones. 2002;7(2):230–4.

    PubMed  PubMed Central  Google Scholar 

  105. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18(1):64–76.

    PubMed  PubMed Central  Google Scholar 

  106. Khandelwal A, Crowley VM, Blagg BSJ. Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med Res Rev. 2016;36(1):92–118.

    PubMed  Google Scholar 

  107. Gorska M, Popowska U, Sielicka-Dudzin A, Kuban-Jankowska A, Sawczuk W, Knap N, et al. Geldanamycin and its derivatives as Hsp90 inhibitors. Front Biosci. 2012;17:2269–77.

    Google Scholar 

  108. Taldone T, Sun W, Chiosis G. Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem. 2009;17(6):2225–35.

    PubMed  Google Scholar 

  109. Park HK, Lee JE, Lim J, Jo DE, Park SA, Suh PG, et al. Combination treatment with doxorubicin and gamitrinib synergistically augments anticancer activity through enhanced activation of Bim. BMC Cancer. 2014;14:431.

    PubMed  PubMed Central  Google Scholar 

  110. Fulop T, Witkowski JM, Pawelec G, Alan C, Larbi A. On the immunological theory of aging. Interdiscip Top Gerontol. 2014;39:163–76.

    PubMed  Google Scholar 

  111. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9.

    PubMed  Google Scholar 

  112. An JY, Darveau R, Kaeberlein M. Oral health in geroscience: animal models and the aging oral cavity. Geroscience. 2018;40(1):1–10.

    PubMed  Google Scholar 

  113. Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol Series A Biol Sci Med Sci. 2013;68(6):667–74.

    Google Scholar 

  114. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8(9):1844–65.

    PubMed  PubMed Central  Google Scholar 

  115. Levine ME, Crimmins EM. Is 60 the new 50? Examining changes in biological age over the past two decades. Demography. 2018;55(2):387–402.

    PubMed  PubMed Central  Google Scholar 

  116. Chapple IL, Van der Weijden F, Dorfer C, Herrera D, Shapira L, Polak D, et al. Primary prevention of periodontitis: managing gingivitis. J Clin Periodontol. 2015;42:S71.

    PubMed  Google Scholar 

  117. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.

    PubMed  PubMed Central  Google Scholar 

  118. Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: review of the evidence. J Periodontol. 2013;84(Suppl 4):S8–S19.

    PubMed  Google Scholar 

  119. Eke PI, Page RC, Wei L, Thornton-Evans G, Genco RJ. Update of the case definitions for population-based surveillance of periodontitis. J Periodontol. 2012;83(12):1449–54.

    PubMed  PubMed Central  Google Scholar 

  120. Hajishengallis G. Aging and its impact on innate immunity and inflammation: implications for periodontitis. J Oral Biosci. 2014;56(1):30–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We want to thank M.J. Steffen, J. Stevens, and Dr. S.S. Kirakodu for expert technical support in developing biologic marker data for these types of studies. We also thank Drs. L. Orraca, J. Martinez-Gonzalez, S. Kirakodu, A. Stromberg, M.J. Novak from the University of Puerto Rico, Caribbean Primate Research Center, and University of Kentucky for their support in the work with nonhuman primates and data analysis. This work was supported by USPHS grants RR020145, GM110788, and GM103538 from the National Institutes of Health and funding from the Center for Oral Health Research in the UK College of Dentistry, as well as the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health (NIH) through Grant Number 5P40OD012217 to the Caribbean Primate Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Ebersole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebersole, J.L., Gonzalez, O.A. (2020). Cellular Senescence in Aging Mucosal Tissues Is Accentuated by Periodontitis. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42990-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42989-8

  • Online ISBN: 978-3-030-42990-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics