Advertisement

Salicylic Acid Polymers in Periodontal Tissue Healing

Chapter
  • 230 Downloads

Abstract

Salicylic acid (SA) has therapeutic potential based on its anti-inflammatory and antimicrobial properties. A limitation of SA treatment is its short half-life in vivo that can be overcome by the sustained release by incorporation into a polymer backbone resulting in biodegradable salicylic acid-based poly(anhydride-esters) (SAPAE). In addition to slow release for up to 1 month, SAPAE is simple to produce and is an effective low-cost alternative to biologic factors. These properties are useful in promoting bone regeneration, particularly under situations where inflammation is enhanced by systemic conditions such as diabetes. In a rat critical size defect model, SAPAE application with bone grafting material significantly increased bone fill as assessed by micro-computed tomography (CT) and histomorphometry. While there was accelerated bone formation in the normoglycemic group, there was both accelerated and increased bone formation in diabetic rats. The increased bone formation in the diabetic group was tied to a decrease in inflammation during the period of bone formation, an increase in the number of osteoblasts, and a reduction of osteoclasts. The results suggest that SAPAE polymer can be used to accelerate and enhance bone formation in the treatment of periodontal and other craniofacial osseous defects and may be useful for the treatment of peri-implantitis, particularly in diabetic conditions.

Keywords

Salicylic acid Salicylic acid-based poly(anhydride-esters) (SAPAE) Bone regeneration Periodontitis Peri-implantitis Diabetes Osteoblasts Osteoclasts 

References

  1. 1.
    Mahdi JG, Mahdi AJ, Mahdi AJ, Bowen ID. The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Prolif. 2006;39:147–55.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Madan RK, Levitt J. A review of toxicity from topical salicylic acid preparations. J Am Acad Dermatol. 2014;70:788–92.PubMedGoogle Scholar
  3. 3.
    Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232.PubMedGoogle Scholar
  4. 4.
    Amann R, Peskar BA. Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol. 2002;447:1–9.PubMedGoogle Scholar
  5. 5.
    Cottrell J, O’Connor JP. Effect of non-steroidal anti-inflammatory drugs on bone healing. Pharmaceuticals. 2010;3:1668–93.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Higgs GA, Salmon JA, Henderson B, Vane JR. Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Natl Acad Sci U S A. 1987;84:1417–20.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mitchell JA, Saunders M, Barnes PJ, Newton R, Belvisi MG. Sodium salicylate inhibits Cyclo-Oxygenase-2 activity independently of transcription factor (nuclear factor κB) activation: role of arachidonic acid. Mol Pharmacol. 1997;51:907.PubMedGoogle Scholar
  8. 8.
    Ping M, Zizhen L, Meng X, Rui J, Weirui L, Xiaohong W, Shen M, Gaimei S. Naturally occurring methyl salicylate glycosides. Mini-Rev Med Chem. 2014;14:56–63.Google Scholar
  9. 9.
    Rowland M, Riegelman S. Pharmacokinetics of acetylsalicylic acid and salicylic acid after intravenous administration in man. J Pharm Sci. 1968;57:1313–9.Google Scholar
  10. 10.
    Prudencio A, Schmeltzer RC, Uhrich KE. Effect of linker structure on salicylic acid-derived poly(anhydride−esters). Macromolecules. 2005;38:6895–901.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Faig Jonathan J, Smith K, Moretti A, Yu W, Uhrich Kathryn E. One-pot polymerization syntheses: incorporating bioactives into poly(anhydride-esters). Macromol Chem Phys. 2016;217:1842–50.Google Scholar
  12. 12.
    Carbone Ashley L, Uhrich Kathryn E. Design and synthesis of fast-degrading poly(anhydride-esters). Macromol Rapid Commun. 2009;30:1021–6.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Whitaker-Brothers K, Uhrich K. Poly(anhydride-ester) fibers: role of copolymer composition on hydrolytic degradation and mechanical properties. J Biomed Mater Res A. 2004;70A:309–18.Google Scholar
  14. 14.
    Griffin J, Delgado-Rivera R, Meiners S, Uhrich KE. Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating the peripheral nervous system. J Biomed Mat Res A. 2011;97:230–42.Google Scholar
  15. 15.
    Subramanian S, Mitchell A, Yu W, Snyder S, Uhrich K, O'Connor JP. Salicylic acid-based polymers for guided bone regeneration using bone morphogenetic Protein-2. Tissue Eng Part A. 2015;21:2013–24.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Demirdirek B, Uhrich KE. Physically crosslinked salicylate-based poly (N-isopropylacrylamide-co-acrylic acid) hydrogels for protein delivery. J Bioact Compat Polym. 2018;33:224–36.Google Scholar
  17. 17.
    Demirdirek B, Uhrich KE. Novel salicylic acid-based chemically crosslinked pH-sensitive hydrogels as potential drug delivery systems. Int J Pharm. 2017;528:406–15.PubMedGoogle Scholar
  18. 18.
    Demirdirek B, Uhrich KE. Salicylic acid-based pH-sensitive hydrogels as potential oral insulin delivery systems. J Drug Target. 2015;23:716–24.PubMedGoogle Scholar
  19. 19.
    Ouimet MA, Fogaca R, Snyder SS, Sathaye S, Catalani LH, Pochan DJ, Uhrich KE. Poly(anhydride-ester) and poly(N-vinyl-2-pyrrolidone) blends: salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation. Macromol Biosci. 2015;15:342–50.PubMedGoogle Scholar
  20. 20.
    Yu W, Bien-Aime S, Li J, Zhang L, McCormack ES, Goldberg ID, Narayan P, Uhrich KE. Injectable microspheres for extended delivery of bioactive insulin and salicylic acid. J Bioact Compat Polym. 2015;30:340–6.Google Scholar
  21. 21.
    Delgado-Rivera R, Rosario-Melendez R, Yu W, Uhrich KE. Biodegradable salicylate-based poly(anhydride-ester) microspheres for controlled insulin delivery. J Biomed Mat Res A. 2014;102:2736–42.Google Scholar
  22. 22.
    Rosario-Meléndez R, Ouimet M, Uhrich K. Formulation of salicylate-based poly(anhydride-ester) microspheres for short- and long-term salicylic acid delivery. Polym Bull. 2013;70:343–51.Google Scholar
  23. 23.
    Díez S, Tros de Ilarduya C. Versatility of biodegradable poly(d,l-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Eur J Pharm Biopharm. 2006;63:188–97.PubMedGoogle Scholar
  24. 24.
    Stebbins ND, Faig JJ, Yu W, Guliyev R, Uhrich KE. Polyactives: controlled and sustained bioactive release via hydrolytic degradation. Biomater Sci. 2015;3:1171–87.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125:315–37.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Simon AM, Manigrasso MB, O'Connor JP. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002;17:963–76.PubMedGoogle Scholar
  27. 27.
    Sri B, Vadithya A, Chatterjee A. As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci. 2012;1:642–61.Google Scholar
  28. 28.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng. 2000;2:9–29.PubMedGoogle Scholar
  29. 29.
    Lopérgolo LC, Lugão AB, Catalani LH. Direct UV photocrosslinking of poly(N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer. 2003;44:6217–22.Google Scholar
  30. 30.
    Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58:1379–408.PubMedGoogle Scholar
  31. 31.
    Park H, Park K. Hydrogels in bioapplications. In: Hydrogels and Biodegradable Polymers for Bioapplications. Washington, DC: American Chemical Society; 1996. p. 2–10.Google Scholar
  32. 32.
    Kipper MJ, Shen E, Determan A, Narasimhan B. Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials. 2002;23:4405–12.PubMedGoogle Scholar
  33. 33.
    Whitaker-Brothers K, Uhrich K. Investigation into the erosion mechanism of salicylate-based poly(anhydride-esters). J Biomed Mat Res A. 2006;76:470–9.Google Scholar
  34. 34.
    Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov. 2005;4:71.PubMedGoogle Scholar
  35. 35.
    Kumar CG, Anand SK. Significance of microbial biofilms in food industry: a review. Int J Food Microbiol. 1998;42:9–27.PubMedGoogle Scholar
  36. 36.
    Perilli R, Marziano ML, Formisano G, Caiazza S, Scorcia G, Baldassarri L. Alteration of organized structure of biofilm formed by Staphylococcus epidermidis on soft contact lenses. J Biomed Mater Res. 2000;49:53–7.PubMedGoogle Scholar
  37. 37.
    Phan TN, Reidmiller JS, Marquis RE. Sensitization of actinomyces naeslundii and streptococcus sanguis biofilms and suspensons to acid damage by fluoride and other weak acids. Arch Microbiol. 2000;174(4):248–55.PubMedGoogle Scholar
  38. 38.
    Muller E, Al-Attar J, Wolff AG, Farber BF. Mechanism of salicylate-mediated inhibition of biofilm in Staphylococcus epidermidis. J Infect Dis. 1998;177:501–3.PubMedGoogle Scholar
  39. 39.
    Brown MRW, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics a growth-rate related effect? J Antimicrob Chemother. 1988;22:777–80.PubMedGoogle Scholar
  40. 40.
    Dunne WM Jr, Mason EO Jr, Kaplan SL. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 1993;37:2522–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Arciola C, Montanaro L, Caramazza R, Sassoli V, Cavedagna D. Inhibition of bacterial adherence to a high-water-content polymer by a water-soluble, nonsteroidal, anti-inflammatory drug. J Biomed Mater Res. 1998;42(1):1–5.PubMedGoogle Scholar
  42. 42.
    Bryers JD, Jarvis RA, Lebo J, Prudencio A, Kyriakides TR, Uhrich K. Biodegradation of poly(anhydride-esters) into non-steroidal anti-inflammatory drugs and their effect on Pseudomonas aeruginosa biofilms in vitro and on the foreign-body response in vivo. Biomaterials. 2006;27:5039–48.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Rosenberg L, Carbone A, Römling U, Uhrich K, Chikindas M. Salicylic acid-based poly (anhydride esters) for control of biofilm formation in Salmonella enterica serovar typhimurium. Lett Appl Microbiol. 2008;46:593–9.PubMedGoogle Scholar
  44. 44.
    Vane J, Botting R. Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J. 1987;1:89–96.PubMedGoogle Scholar
  45. 45.
    Erdmann L, Macedo B, Uhrich K. Degradable poly (anhydride ester) implants: effects of localized salicylic acid release on bone. Biomaterials. 2000;21:2507–12.PubMedGoogle Scholar
  46. 46.
    Mitchell A, Kim B, Cottrell J, Snyder S, Witek L, Ricci J, Uhrich KE, O’Connor JP. Development of a guided bone regeneration device using salicylic acid-poly(anhydride-ester) polymers and osteoconductive scaffolds. J Biomed Mat Res A. 2014;102:655–64.Google Scholar
  47. 47.
    Mitchell A, Kim B, Snyder S, Subramanian S, Uhrich K, O’Connor JP. Use of salicylic acid polymers and bone morphogenetic protein-2 to promote bone regeneration in rabbit parietal bone defects. J Bioact Compat Polym. 2015;31:140–51.Google Scholar
  48. 48.
    Yunus Basha R, Sampath Kumar TS, Doble M. Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C. 2015;57:452–63.Google Scholar
  49. 49.
    Dorj B, Won J-E, Purevdorj O, Patel KD, Kim J-H, Lee E-J, Kim H-W. A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery. Acta Biomater. 2014;10:1238–50.PubMedGoogle Scholar
  50. 50.
    Quinlan E, Thompson EM, Matsiko A, O’Brien FJ, López-Noriega A. Functionalization of a collagen–hydroxyapatite scaffold with osteostatin to facilitate enhanced bone regeneration. Adv Healthc Mater. 2015;4:2649–56.PubMedGoogle Scholar
  51. 51.
    Sutherland AJ, Detamore MS. Bioactive microsphere-based scaffolds containing decellularized cartilage. Macromol Biosci. 2015;15:979–89.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim B-S, Kim J-S, Yang S-S, Kim H-W, Lim HJ, Lee J. Angiogenin-loaded fibrin/bone powder composite scaffold for vascularized bone regeneration. Biomat Res. 2015;19:18.Google Scholar
  53. 53.
    Retzepi M, Lewis MP, Donos N. Effect of diabetes and metabolic control on de novo bone formation following guided bone regeneration. Clin Oral Implants Res. 2010;21:71–9.PubMedGoogle Scholar
  54. 54.
    Ramanujam CL, Facaros Z, Zgonis T. An overview of bone grafting techniques for the diabetic charcot foot and ankle. Clin Podiatr Med Surg. 2012;29:589.PubMedGoogle Scholar
  55. 55.
    Wada K, Yu W, Elazizi M, Barakat S, Ouimet MA, Rosario-Meléndez R, Fiorellini JP, Graves DT, Uhrich KE. Locally delivered salicylic acid from a poly(anhydride-ester) impact on diabetic bone regeneration. J Control Release. 2013;171:33–7.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Yu W, Bien-Aime S, Mattos M, Alsadun S, Wada K, Rogado S, Fiorellini J, Graves D, Uhrich K. Sustained, localized salicylic acid delivery enhances diabetic bone regeneration via prolonged mitigation of inflammation. J Biomed Mat Res A. 2016;104:2595–603.Google Scholar
  57. 57.
    Liu R, Bal HS, Desta T, Behl Y, Graves DT. Tumor necrosis factor-alpha mediates diabetes-enhanced apoptosis of matrix-producing cells and impairs diabetic healing. Am J Pathol. 2006;168:757–64.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Pacios S, Andriankaja O, Kang J, Alnammary M, Bae J, de Brito Bezerra B, Schreiner H, Fine DH, Graves DT. Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis. Am J Pathol. 2013;183:1928–35.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Xiao W, Li S, Pacios S, Wang Y, Graves DT. Bone remodeling under pathological conditions. Front Oral Biol. 2016;18:17–27.PubMedGoogle Scholar
  60. 60.
    Pacios S, Kang J, Galicia J, Gluck K, Patel H, Ovaydi-Mandel A, Petrov S, Alawi F, Graves DT. Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J. 2012;26:1423–30.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu R, Bal HS, Desta T, Krothapalli N, Alyassi M, Luan Q, Graves DT. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res. 2006;85:510–4.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kang J, de Brito Bezerra B, Pacios S, Andriankaja O, Li Y, Tsiagbe V, Schreiner H, Fine DH, Graves DT. Aggregatibacter actinomycetemcomitans infection enhances apoptosis in vivo through a caspase-3-dependent mechanism in experimental periodontitis. Infect Immun. 2012;80:2247–56.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Simmons DJ. Fracture healing perspectives. Clin Orthop Relat Res. 1985;200:100–13.Google Scholar
  64. 64.
    Zhang X, Kohli M, Zhou Q, Graves DT, Amar S. Short- and long-term effects of IL-1 and TNF antagonists on periodontal wound healing. J Immunol. 2004;173:3514–23.PubMedGoogle Scholar
  65. 65.
    Panda H. Handbook on drugs from natrual sources. New Delhi: Asia Pacific Business Press Inc.; 2010.Google Scholar
  66. 66.
    Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14:179–86.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev. 2011;17:393–402.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Brugger OE, Bornstein MM, Kuchler U, Janner SF, Chappuis V, Buser D. Implant therapy in a surgical specialty clinic: an analysis of patients, indications, surgical procedures, risk factors, and early failures. Int J Oral Maxillofac Implants. 2015;30:151–60.PubMedGoogle Scholar
  69. 69.
    Claffey N, Clarke E, Polyzois I, Renvert S. Surgical treatment of peri-implantitis. J Clin Periodontol. 2008;35:316–32.PubMedGoogle Scholar
  70. 70.
    Schwarz F, Jepsen S, Herten M, Sager M, Rothamel D, Becker J. Influence of different treatment approaches on non-submerged and submerged healing of ligature induced peri-implantitis lesions: an experimental study in dogs. J Clin Periodontol. 2006;33:584–95.PubMedGoogle Scholar
  71. 71.
    Derks J, Schaller D, Hakansson J, Wennstrom JL, Tomasi C, Berglundh T. Effectiveness of implant therapy analyzed in a Swedish population: prevalence of peri-implantitis. J Dent Res. 2016;95:43–9.PubMedGoogle Scholar
  72. 72.
    Tarnow DP. Increasing prevalence of peri-implantitis: how will we manage? J Dent Res. 2016;95:7–8.PubMedGoogle Scholar
  73. 73.
    Sanz M, Chapple IL, V. E. W. o. P. Working Group 4 of the. Clinical research on peri-implant diseases: consensus report of working group 4. J Clin Periodontol. 2012;39(Suppl 12):202–6.PubMedGoogle Scholar
  74. 74.
    Mellado Valero A, Ferrer García JC, Herrera Ballester A, Labaig Rueda C. Effects of diabetes on the osseointegration of dental implants. Med Oral Patol Oral Cir Bucal (Internet). 2007;12:38–43.Google Scholar
  75. 75.
    Camargo WA, de Vries R, van Luijk J, Hoekstra JW, Bronkhorst EM, Jansen JA, van den Beucken JJ. Diabetes mellitus and bone regeneration: a systematic review and meta-analysis of animal studies. Tissue Eng Part B Rev. 2017;23:471–9.PubMedGoogle Scholar
  76. 76.
    Genuth S, Alberti K, Bennett P, Buse J, DeFronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–8.PubMedGoogle Scholar
  77. 77.
    Chrcanovic BR, Albrektsson T, Wennerberg A. Diabetes and oral implant failure: a systematic review. J Dent Res. 2014;93:859–67.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Oates TW, Dowell S, Robinson M, McMahan CA. Glycemic control and implant stabilization in type 2 diabetes mellitus. J Dent Res. 2009;88:367–71.PubMedPubMedCentralGoogle Scholar
  79. 79.
    von Wilmowsky C, Stockmann P, Harsch I, Amann K, Metzler P, Lutz R, Moest T, Neukam FW, Schlegel KA. Diabetes mellitus negatively affects peri-implant bone formation in the diabetic domestic pig. J Clin Periodontol. 2011;38:771–9.Google Scholar
  80. 80.
    Coelho PG, Pippenger B, Tovar N, Koopmans SJ, Plana NM, Graves DT, Engebretson S, van Beusekom HMM, Oliveira P, Dard M. Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: a pilot study. J Oral Maxillofac Surg. 2018;76:1677–87.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Abduljabbar T, Al-Sahaly F, Kellesarian SV, Kellesarian TV, Al-Anazi M, Al-Khathami M, Javed F, Vohra F. Comparison of peri-implant clinical and radiographic inflammatory parameters and whole salivary destructive inflammatory cytokine profile among obese and non-obese men. Cytokine. 2016;88:51–6.PubMedGoogle Scholar
  82. 82.
    Daubert DM, Weinstein BF, Bordin S, Leroux BG, Flemming TF. Prevalence and predictive factors for peri-implant disease and implant failure: a cross-sectional analysis. J Periodontol. 2015;86:337–47.PubMedGoogle Scholar
  83. 83.
    Elangovan S, Brogden KA, Dawson DV, Blanchette D, Pagan-Rivera K, Stanford CM, Johnson GK, Recker E, Bowers R, Haynes WG, Avila-Ortiz G. Body fat indices and biomarkers of inflammation: a cross-sectional study with implications for obesity and peri-implant oral health. Int J Oral Maxillofac Implants. 2014;29:1429–34.PubMedGoogle Scholar
  84. 84.
    Vohra F, Alkhudhairy F, Al-Kheraif AA, Akram Z, Javed F. Peri-implant parameters and C-reactive protein levels among patients with different obesity levels. Clin Implant Dent Relat Res. 2018;20:130–6.PubMedGoogle Scholar
  85. 85.
    Li Y, Lu Z, Zhang X, Yu H, Kirkwood KL, Lopes-Virella MF, Huang Y. Metabolic syndrome exacerbates inflammation and bone loss in periodontitis. J Dent Res. 2015;94:362–70.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wu YY, Xiao E, Graves DT. Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci. 2015;7:63–72.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, Bone IOF, Diabetes Working G. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19.PubMedGoogle Scholar
  88. 88.
    Graves DT, Alshabab A, Albiero ML, Mattos M, Correa JD, Chen S, Yang Y. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol. 2018;45:285–92.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Alharbi MA, Zhang C, Lu C, Milovanova TN, Yi L, Ryu JD, Jiao H, Dong G, O'Connor JP, Graves DT. FOXO1 deletion reverses the effect of diabetic-induced impaired fracture healing. Diabetes. 2018;67:2682–94.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Xiao E, Mattos M, Vieira GHA, Chen S, Correa JD, Wu Y, Albiero ML, Bittinger K, Graves DT. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe. 2017;22:120–128.e124.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhou M, Rong R, Munro D, Zhu C, Gao X, Zhang Q, Dong Q. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing. PLoS One. 2013;8:e61516.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Saeb ATM, Al-Rubeaan KA, Aldosary K, Udaya Raja GK, Mani B, Abouelhoda M, Tayeb HT. Relative reduction of biological and phylogenetic diversity of the oral microbiota of diabetes and pre-diabetes patients. Microb Pathog. 2019;128:215–29.PubMedGoogle Scholar
  93. 93.
    Sabharwal A, Ganley K, Miecznikowski JC, Haase EM, Barnes V, Scannapieco FA. The salivary microbiome of diabetic and non-diabetic adults with periodontal disease. J Periodontol. 2019;90:26–34.PubMedGoogle Scholar
  94. 94.
    Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab. 2016;5:795–803.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6:1176–85.PubMedGoogle Scholar
  96. 96.
    Mahato N, Wu X, Wang L. Management of peri-implantitis: a systematic review, 2010-2015. Springerplus. 2016;5:105.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Persson LG, Berglundh T, Lindhe J, Sennerby L. Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res. 2001;12:595–603.PubMedGoogle Scholar
  98. 98.
    Renvert S, Quirynen M. Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res. 2015;26(Suppl 11):15–44.PubMedGoogle Scholar
  99. 99.
    Venza I, Visalli M, Cucinotta M, De Grazia G, Teti D, Venza M. Proinflammatory gene expression at chronic periodontitis and peri-implantitis sites in patients with or without type 2 diabetes. J Periodontol. 2010;81:99–108.PubMedGoogle Scholar
  100. 100.
    Erdmann L, Uhrich K. Synthesis and degradation characteristics of salicylic acid-derived poly (anhydride-esters). Biomaterials. 2000;21:1941–6.PubMedGoogle Scholar
  101. 101.
    Housby JN, Cahill CM, Chu B, Prevelige R, Bickford K, Stevenson MA, Calderwood SK. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine. 1999;11:347–58.PubMedGoogle Scholar
  102. 102.
    Fujita D, Yamashita N, Iita S, Amano H, Yamada S, Sakamoto K. Prostaglandin E2 induced the differentiation of osteoclasts in mouse osteoblast-depleted bone marrow cells. Prostaglandins Leukot Essent Fat Acids. 2003;68:351–8.Google Scholar
  103. 103.
    Gruber R, Karreth F, Fischer M, Watzek G. Platelet-released supernatants stimulate formation of osteoclast-like cells through a prostaglandin/RANKL-dependent mechanism. Bone. 2002;30:726–32.PubMedGoogle Scholar
  104. 104.
    Lader C, Flanagan A. Prostaglandin E2, interleukin 1α, and tumor necrosis factor-α increase human osteoclast formation and bone resorption in vitro 1. Endocrinology. 1998;139:3157–64.PubMedGoogle Scholar
  105. 105.
    Okada Y, Lorenzo JA, Freeman AM, Tomita M, Morham SG, Raisz LG, Pilbeam CC. Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J Clin Investig. 2000;105:823.PubMedGoogle Scholar
  106. 106.
    Carbone-Howell AL, Stebbins ND, Uhrich KE. Poly(anhydride-esters) comprised exclusively of naturally occurring antimicrobials and EDTA: antioxidant and antibacterial activities. Biomacromolecules. 2014;15:1889–95.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Rosenberg LE, Carbone AL, Romling U, Uhrich KE, Chikindas ML. Salicylic acid-based poly(anhydride esters) for control of biofilm formation in Salmonella enterica serovar typhimurium. Lett Appl Microbiol. 2008;46:593–9.PubMedGoogle Scholar
  108. 108.
    Sanz-Martin I, Doolittle-Hall J, Teles RP, Patel M, Belibasakis GN, Hammerle CHF, Jung RE, Teles FRF. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina sequencing. J Clin Periodontol. 2017;44:1274–84.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Periodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of ChemistryUniversity of CaliforniaRiversideUSA
  3. 3.Department of BiomaterialsNew York University College of DentistryNew YorkUSA
  4. 4.Department of Plastic SurgeryNew York University School of MedicineNew YorkUSA
  5. 5.Department of BiomaterialsNew York University College of DentistryNew YorkUSA

Personalised recommendations