Abstract
At present, various tissue engineering strategies in the regenerative medicine have been developed for multiple tissue regeneration and integrative structure formations in musculoskeletal system. However, the regenerations of dental tissues or tooth-supportive structures are still challenging due to the micro-interfacial compartmentalization of multiple tissues, their integrations for systematic responses, and spatiotemporal organizations of engineered fibrous tissues. In particular, the biomaterial-based approaches are limitedly investigated for spatiotemporal controls of periodontal regenerations and challenging to promote micron-scaled interfacial tissue compartmentalization with their integrations for functioning restorations. This chapter demonstrates biomaterial applications for periodontal tissue engineering and the advanced 3D fabrication technologies for preclinical applications and the limited clinical trial using 3D scaffolding systems.
Keywords
- 3D printing
- Periodontal tissues
- Tissue engineering
- Regenerative medicine
- Biomaterials
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20. https://doi.org/10.1016/S0140-6736(05)67728-8.
Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90. https://doi.org/10.1038/nrmicro2337.
Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, Wall IB, Shi S, Kim HW. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–11. https://doi.org/10.1177/0022034514540682.
Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA, Genco RJ. Periodontitis in US adults: national health and nutrition examination survey 2009–2014. J Am Dent Assoc. 2018;149(7):576–588.e576. https://doi.org/10.1016/j.adaj.2018.04.023.
Eke PI, Wei L, Borgnakke WS, Thornton-Evans G, Zhang X, Lu H, McGuire LC, Genco RJ. Periodontitis prevalence in adults >/= 65 years of age, in the USA. Periodontol 2000. 2016;72(1):76–95. https://doi.org/10.1111/prd.12145.
Tonetti MS, D’Aiuto F, Nibali L, Donald A, Storry C, Parkar M, Suvan J, Hingorani AD, Vallance P, Deanfield J. Treatment of periodontitis and endothelial function. N Engl J Med. 2007;356(9):911–20. https://doi.org/10.1056/NEJMoa063186.
Park CH, Kim KH, Rios HF, Lee YM, Giannobile WV, Seol YJ. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J Dent Res. 2014a;93(12):1304–12. https://doi.org/10.1177/0022034514550716.
Vaquette C, Pilipchuk SP, Bartold PM, Hutmacher DW, Giannobile WV, Ivanovski S. Tissue engineered constructs for periodontal regeneration: current status and future perspectives. Adv Healthc Mater. 2018;7(21):e1800457. https://doi.org/10.1002/adhm.201800457.
Park CH, Kim KH, Lee YM, Giannobile WV, Seol YJ. 3D printed, microgroove pattern-driven generation of oriented ligamentous architectures. Int J Mol Sci. 2017;18(9). https://doi.org/10.3390/ijms18091927.
Pilipchuk SP, Fretwurst T, Yu N, Larsson L, Kavanagh NM, Asa’ad F, Cheng KCK, Lahann J, Giannobile WV. Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament-like tissues. Adv Healthc Mater. 2018;7(22):e1800750. https://doi.org/10.1002/adhm.201800750.
Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater. 2016;5(6):676–87. https://doi.org/10.1002/adhm.201500758.
Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev. 2006;(2):CD001724. https://doi.org/10.1002/14651858.CD001724.pub2.
Zita Gomes R, Paraud Freixas A, Han CH, Bechara S, Tawil I. Alveolar ridge reconstruction with titanium meshes and simultaneous implant placement: a retrospective, multicenter clinical study. Biomed Res Int. 2016;2016:5126838. https://doi.org/10.1155/2016/5126838.
Pieri F, Corinaldesi G, Fini M, Aldini NN, Giardino R, Marchetti C. Alveolar ridge augmentation with titanium mesh and a combination of autogenous bone and anorganic bovine bone: a 2-year prospective study. J Periodontol. 2008;79(11):2093–103. https://doi.org/10.1902/jop.2008.080061.
Gutta R, Baker RA, Bartolucci AA, Louis PJ. Barrier membranes used for ridge augmentation: is there an optimal pore size? J Oral Maxillofac Surg. 2009;67(6):1218–25. https://doi.org/10.1016/j.joms.2008.11.022.
Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011;6(10):1187–97. https://doi.org/10.1002/biot.201100294.
Her S, Kang T, Fien MJ. Titanium mesh as an alternative to a membrane for ridge augmentation. J Oral Maxillofac Surg. 2012;70(4):803–10. https://doi.org/10.1016/j.joms.2011.11.017.
Watzinger F, Luksch J, Millesi W, Schopper C, Neugebauer J, Moser D, Ewers R. Guided bone regeneration with titanium membranes: a clinical study. Br J Oral Maxillofac Surg. 2000;38(4):312–5. https://doi.org/10.1054/bjom.1999.0228.
Cheon GB, Kang KL, Yoo MK, Yu JA, Lee DW. Alveolar ridge preservation using allografts and dense polytetrafluoroethylene membranes with open membrane technique in unhealthy extraction socket. J Oral Implantol. 2017;43(4):267–73. https://doi.org/10.1563/aaid-joi-D-17-00012.
Chan HL, Benavides E, Tsai CY, Wang HL. A titanium mesh and particulate allograft for vertical ridge augmentation in the posterior mandible: a pilot study. Int J Periodont Restor Dent. 2015;35(4):515–22. https://doi.org/10.11607/prd.1980.
Stoecklin-Wasmer C, Rutjes AW, da Costa BR, Salvi GE, Juni P, Sculean A. Absorbable collagen membranes for periodontal regeneration: a systematic review. J Dent Res. 2013;92(9):773–81. https://doi.org/10.1177/0022034513496428.
Garg A. Barrier membranes—materials review, part I of II. Dent Implantol Updat. 2011;22(9):61–4.
Barber HD, Lignelli J, Smith BM, Bartee BK. Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J Oral Maxillofac Surg. 2007;65(4):748–52. https://doi.org/10.1016/j.joms.2006.10.042.
Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers. 2016;8(4):115.
Hoogeveen EJ, Gielkens PF, Schortinghuis J, Ruben JL, Huysmans MC, Stegenga B. Vivosorb as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography. Int J Oral Maxillofac Surg. 2009;38(8):870–5. https://doi.org/10.1016/j.ijom.2009.04.002.
Shang S, Yang F, Cheng X, Walboomers XF, Jansen JA. The effect of electrospun fibre alignment on the behaviour of rat periodontal ligament cells. Eur Cell Mater. 2010;19:180–92.
Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(Lactic-co-Glycolic Acid): applications and future prospects for periodontal tissue regeneration. Polymers. 2017;9(6):189.
Won JY, Park CY, Bae JH, Ahn G, Kim C, Lim DH, Cho DW, Yun WS, Shim JH, Huh JB. Evaluation of 3D printed PCL/PLGA/beta-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Biomed Mater. 2016;11(5):055013. https://doi.org/10.1088/1748-6041/11/5/055013.
Shim JH, Huh JB, Park JY, Jeon YC, Kang SS, Kim JY, Rhie JW, Cho DW. Fabrication of blended polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Eng A. 2013;19(3–4):317–28. https://doi.org/10.1089/ten.TEA.2011.0730.
Nowzari H, Matian F, Slots J. Periodontal pathogens on polytetrafluoroethylene membrane for guided tissue regeneration inhibit healing. J Clin Periodontol. 1995;22(6):469–74.
Pihlstrom BL, McHugh RB, Oliphant TH, Ortiz-Campos C. Comparison of surgical and nonsurgical treatment of periodontal disease. A review of current studies and additional results after 61/2 years. J Clin Periodontol. 1983;10(5):524–41.
Tonetti MS, Pini-Prato G, Cortellini P. Periodontal regeneration of human intrabony defects. IV. Determinants of healing response. J Periodontol. 1993;64(10):934–40. https://doi.org/10.1902/jop.1993.64.10.934.
Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K. Metallic biomaterials: current challenges and opportunities. Materials (Basel). 2017;10(8) https://doi.org/10.3390/ma10080884.
Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015;8(3):932–58. https://doi.org/10.3390/ma8030932.
Fugazzotto PA, Shanaman R, Manos T, Shectman R. Guided bone regeneration around titanium implants: report of the treatment of 1,503 sites with clinical reentries. Int J Periodont Restor Dent. 1997;17 (3):292, 293–299.
Proussaefs P, Lozada J. Use of titanium mesh for staged localized alveolar ridge augmentation: clinical and histologic-histomorphometric evaluation. J Oral Implantol. 2006;32(5):237–47. https://doi.org/10.1563/1548-1336(2006)32[237:UOTMFS]2.0.CO;2.
Ronda M, Rebaudi A, Torelli L, Stacchi C. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial. Clin Oral Implants Res. 2014;25(7):859–66. https://doi.org/10.1111/clr.12157.
Buser D, Bragger U, Lang NP, Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res. 1990;1(1):22–32.
von Arx T, Hardt N, Wallkamm B. The TIME technique: a new method for localized alveolar ridge augmentation prior to placement of dental implants. Int J Oral Maxillofac Implants. 1996;11(3):387–94.
Naira LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv Drug Deliv Rev. 2015;94:126–40. https://doi.org/10.1016/j.addr.2015.03.004.
Yilgor C, Yilgor Huri P, Huri G. Tissue engineering strategies in ligament regeneration. Stem Cells Int. 2012;2012:374676. https://doi.org/10.1155/2012/374676.
Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol. 2001;72(2):215–29. https://doi.org/10.1902/jop.2001.72.2.215.
Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145–54.
Rowland CR, Lennon DP, Caplan AI, Guilak F. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials. 2013;34(23):5802–12. https://doi.org/10.1016/j.biomaterials.2013.04.027.
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017;21:9. https://doi.org/10.1186/s40824-017-0095-5.
Blumenthal N, Steinberg J. The use of collagen membrane barriers in conjunction with combined demineralized bone-collagen gel implants in human infrabony defects. J Periodontol. 1990;61(6):319–27. https://doi.org/10.1902/jop.1990.61.6.319.
Chen CC, Wang HL, Smith F, Glickman GN, Shyr Y, O’Neal RB. Evaluation of a collagen membrane with and without bone grafts in treating periodontal intrabony defects. J Periodontol. 1995;66(10):838–47. https://doi.org/10.1902/jop.1995.66.10.838.
Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015;94(Suppl 9):143S–52S. https://doi.org/10.1177/0022034515588885.
Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci. 2005;5(7):569–97. https://doi.org/10.1002/mabi.200500062.
Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 2015;8(9):5744–94. https://doi.org/10.3390/ma8095273.
Suuronen R, Pohjonen T, Hietanen J, Lindqvist C. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. J Oral Maxillofac Surg. 1998;56(5):604–14. discussion 614–605.
Serino G, Biancu S, Iezzi G, Piattelli A. Ridge preservation following tooth extraction using a polylactide and polyglycolide sponge as space filler: a clinical and histological study in humans. Clin Oral Implants Res. 2003;14(5):651–8.
Soffer A. The practitioner’s role in detection of adverse drug reactions. Chest. 1984;86(6):808–9.
Akita D, Morokuma M, Saito Y, Yamanaka K, Akiyama Y, Sato M, Mashimo T, Toriumi T, Arai Y, Kaneko T, Tsukimura N, Isokawa K, Ishigami T, Honda MJ. Periodontal tissue regeneration by transplantation of rat adipose-derived stromal cells in combination with PLGA-based solid scaffolds. Biomed Res. 2014;35(2):91–103.
Brown A, Zaky S, Ray H Jr, Sfeir C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015;11:543–53. https://doi.org/10.1016/j.actbio.2014.09.008.
Gentile P, Frongia ME, Cardellach M, Miller CA, Stafford GP, Leggett GJ, Hatton PV. Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces. Acta Biomater. 2015;21:35–43. https://doi.org/10.1016/j.actbio.2015.04.009.
Han Y, Zeng Q, Lingling E, Wang D, He H, Liu H. Sustained topical delivery of insulin from fibrin gel loaded with poly(lactic-co-glycolic acid) microspheres improves the biomechanical retention of titanium implants in type 1 diabetic rats. J Oral Maxillofac Surg. 2012;70(10):2299–308. https://doi.org/10.1016/j.joms.2012.05.028.
Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16. discussion 16.
Coombes AG, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25(2):315–25.
Khor HL, Ng KW, Schantz JT, Phan T-T, Lim TC, Teoh SH, Hutmacher DW. Poly(ε-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalen. Mater Sci Eng C. 2002;20(1–2):71–5.
Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 2010;6(12):4725–33.
Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Ohye RG, Green GE. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7(285):285ra264. https://doi.org/10.1126/scitranslmed.3010825.
Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 3D-printed Bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94(Suppl 9):153S–7S. https://doi.org/10.1177/0022034515588303.
Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368(21):2043–5. https://doi.org/10.1056/NEJMc1206319.
Park CH, Rios HF, Taut AD, Padial-Molina M, Flanagan CL, Pilipchuk SP, Hollister SJ, Giannobile WV. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods. 2014b;20(7):533–42. https://doi.org/10.1089/ten.TEC.2013.0619.
Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res. 2014;93(12):1212–21. https://doi.org/10.1177/0022034514544301.
Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng A. 2014;20(7–8):1342–51. https://doi.org/10.1089/ten.TEA.2013.0386.
Park CH, Rios HF, Jin Q, Sugai JV, Padial-Molina M, Taut AD, Flanagan CL, Hollister SJ, Giannobile WV. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials. 2012;33(1):137–45. https://doi.org/10.1016/j.biomaterials.2011.09.057.
Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168. https://doi.org/10.1016/j.progpolymsci.2015.02.004.
Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88–106. https://doi.org/10.1016/j.biomaterials.2017.11.030.
Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. https://doi.org/10.1038/ncomms4935.
Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4(12):1742–62. https://doi.org/10.1002/adhm.201500168.
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24. https://doi.org/10.1038/nmat1421.
Shim JH, Won JY, Sung SJ, Lim DH, Yun WS, Jeon YC, Huh JB. Comparative efficacies of a 3D-printed PCL/PLGA/β-TCP membrane and a titanium membrane for guided bone regeneration in beagle dogs. Polymers. 2015;7(10):2061–77.
Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials. 2012;33(22):5560–73. https://doi.org/10.1016/j.biomaterials.2012.04.038.
Acknowledgments
This work was supported by the Osteology Foundation (#16-173) and National Research Foundation of Korea (NRF-2014R1A1A2059301) to CHP, the Osteology Foundation to YDC, and the NIH/NIDCR U24 DE026915 to WVG.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cho, YD., Giannobile, W.V., Sarment, L., Park, C.H. (2020). Spatiotemporal Controls of Tooth-Supportive Structure Neogenesis by 3D Printing Technology. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-42990-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-42989-8
Online ISBN: 978-3-030-42990-4
eBook Packages: MedicineMedicine (R0)