Skip to main content

Tectonics of the Himalaya

  • Chapter
  • First Online:
Tectonics of the Indian Subcontinent

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

This chapter provides summarized geological and geophysical account of the youngest and highest mountain belt to elucidate the role of the continental lithospheric subduction of the Indian Plate in the evolution of the Himalaya during the Cenozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahami R, van der Beek P, Huyghe H, Hardwick E, Carcaillet J (2016) Decoupling of long-term exhumation and short-term erosion rates in the Sikkim Himalaya. Earth Planet Sci Lett 433:76–88. https://doi.org/10.1016/j.epsl.2015.10.039

    Article  Google Scholar 

  • Acharya SK, Ghose SC, Ghosesn Shah SC (1975) The continental Gondwana Group and associated marine sediments of Arunachal Pradesh (NEFA), Eastern Himalaya. Himalayan Geol 5:60–82

    Google Scholar 

  • Adlakha V, Lang KA, Patel RC, Lal N, Huntington KW (2013) Rapid long-term erosion in the rain shadow of the Shillong Plateau, eastern Himalaya. Tectonophysics 582:76–83

    Google Scholar 

  • Adlakha V, Patel RC, Kumar A, Lal N (2018) Tectonic control over exhumation in the Arunachal Himalaya: new constraints from Apatite Fission Track Analysis. In: Sharma R, Villa IM, Kumar S (eds) Crustal architecture and evolution of the Himalaya–Karakoram–Tibet Orogen, vol 481. Geological Society, London, Special Publications. https://doi.org/10.1144/sp481.1

  • Ahmad T, Tanaka T, Sachan HK, Asahara Y, Islam R, Khanna PP (2008) Geochemical and isotopic constraints on the age and origin of the Nidar ophiolitic complex, Ladakh, India: implication for the Neo-Tethyan subduction along the Indus suture zone. Tectonophysics 451:206‒224

    Google Scholar 

  • Agarwal KK, Singh IB, Sharma M, Sharma S, Rajagopalan G (2002) Extensional tectonic activity in the craton ward parts (peripheral bulge) of the Ganga Plain foreland basin, India. Int J Earth Sci (Geol Rundsch) 91:897–905. https://doi.org/10.1007/s00531-002-0265-z

  • Agnihotri D, Pandita SK, Tewari R, Awatar R, Linnemann U, Pillai USK, A Joshi A, Gautam S, Kumar K (2018) Palynology and detrital zircon geochronology of the Carboniferous Fenestella Shale Formation of the Tethyan realm in Kashmir Himalaya: implications for global correlation and floristic evolution. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.(2017.09.003)

  • Aharon P, Schidlowsk M, Singh IB (1987) Chronostratigraphic markers in the end–Precambrian carbon isotope record of the Lesser Himalaya. Nature 327:699–702

    Google Scholar 

  • Argand E (1924) La tectoniquedel’ Asie. In: Proceeding 13th Internal Geology Congress 7:170‒372

    Google Scholar 

  • Arya R, Ambwani K, Sahni N, Sahni A (2004) First mammal and additional fossil flowers from the Kasauli Formation, Kasauli, Himachal Pradesh. J Geol Soc India 64:317–324

    Google Scholar 

  • Auden JB (1934) The geology of the Krol belt. Rec Geol Surv India 67(4):357–454

    Google Scholar 

  • Auden JB (1935) Traverses in the Himalaya. Geol Surv India 69:123–167

    Google Scholar 

  • Awasthi SC, Prasad M, Srivastava VC (1985) Terraces and Neotectonism in Katra–Riasi, district Udhampur, Jammu and Kashmir. In: Merh SS, Vashi NM (eds) Proceeding quaternary episodes in India. Depart Geol, MS. University, Baroda, pp 39–48

    Google Scholar 

  • Banerjee DM (1974) Stratigraphy and depositional characteristics of Tethyan sediments in Kuti–Kalapani area, Kumaun, India. Himalayan Geol 4:296–322

    Google Scholar 

  • Banerjee DM, McArthur JM (1989) A note on the mineralogy and geochemistry of Mussorie phosphorites of the Lower Himalaya. J Geol Soc India 13:75–82

    Google Scholar 

  • Banerjee DM, Narain MJ (1976) Trace fossils and the Environment of Deposition in the Lower Tal Formation of Mussoorie. J Sedimen Petrol 1:234–239

    Google Scholar 

  • Banerjee DM, Tandon SK, Sinha AK (1975) Trace fossils in the Tethyan succession in a part of north–eastern Kumaun Himalaya: In: Proceedings of symposium on sediment, sedimentation and sedimentary environment, vol 9. University of Delhi, Theme, pp 117–185

    Google Scholar 

  • Banerjee DM, Schidlowski M, Arneth JD (1986) Genesis of upper Proterozoic-Cambrian phosphorte deposits of India: isotopic inferences from carbonate fluorapatite, carbonate and organic carbon. Precamb Res 33:239–253

    Article  Google Scholar 

  • Banerjee DM, Schidlowski M, Siebert F, Brasier MD (1997) Geochemical changes across the Proterozoic–Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India. Palaeogeog Palaeoclim Palaeoeco 132:183–194

    Article  Google Scholar 

  • Barber AJ, Zaw K, Crow MJ (eds) (2017) Myanmar: geology, resources and tectonics. Mem Geol Soc Lond 48

    Google Scholar 

  • Barnes JB, Densmore AL, Mukul M, Sinha R, Jain V, Tandon SK (2011) Interplay between faulting and base level in the development of Himalayan frontal fold topography. J Geophys Res 116:1–19. https://doi.org/10.1029/2010JF001841. F0301

  • Beck RA, Burbank DW, Sercombe WJ, Riley GW, Barndt JK, Berry JR, Afzal J, Khan AM, Jurgen H, Metje J, Cheema A, Shafique NA, Lawrence RD, Khan MA (1995) Stratigraphic evidence for an early collision between northwest India and Asia. Nature 373:55–58

    Google Scholar 

  • Bera MK, Sarkar A, Chakraborty PP, Loyal RS, Sanyal P (2008) Marine to continental transition in Himalayan foreland. Geol Soc Amer Bull 120:1214–1232. https://doi.org/10.1130/B26265.1

  • Berthelsen A (1953) On the Geol of the Rupshu District, N Himalaya. Medd Dan Geol Forening 12:350–415

    Google Scholar 

  • Bhargava ON (1976) Geol of the Krol Belt and associated formations: a reappraisal. Mem Geol Surv India 106:106–234

    Google Scholar 

  • Bhargava ON (1995) The Bhutan Himalaya: a geological account. Geol Surv India Spec Publ 39:1–245

    Google Scholar 

  • Bhargava ON (2008a) An updated introduction of the Spiti geology. J Palaeont Soc India 53:113–129

    Google Scholar 

  • Bhargava ON (2008b) Palaeozoic successions of the Indian Plate. Mem Geol Soc India 74:209–244

    Google Scholar 

  • Bhargava ON (2011) Early Palaeozoic palaeogeography, basin configuration, paleoclimate and tectonics in the Indian plate. Mem Geol Soc India 78:69–99

    Google Scholar 

  • Bhargava ON (2015) Evolution of the Tethyan and Karewa successions in Kashmir: a synthesis. J Palaeont Soc India 60(1):51–72

    Google Scholar 

  • Bhargava ON, Bassi UK (1998) Geol of Spiti-Kinnaur Himachal Himalaya. Mem Geol Surv India 124:1–210

    Google Scholar 

  • Bhargava ON, Singh BP (2019) A broad climatostratigraphy of the Himalaya. Himalayan Geol 40(2):220–238

    Google Scholar 

  • Bhargava ON, Singh BP (2020) Geological evolution of the Tethys Himalaya. Episodes 43(1):404–416, https://doi.org/10.18814/epiiugs/2020/020024

  • Bhargava ON, Srikantia SV (1985) Trilobite and other trace fossils from the Kunzumla Formation, eastern Lahaul, Himachal Pradesh. J Geol Soc India 26:880–886

    Google Scholar 

  • Bhargava ON, Kumar G, Gupta SS (1982) Cambrian trace fossils from the Spiti Valley, Himachal Himalaya. J Geol Soc India 23(4):183–191

    Google Scholar 

  • Bhargava ON, Krystyn L, Balini M, Lein R, Nicora A (2004) Revised litho- and sequence stratigraphy of the Spiti Triassic. Albertiana 30:21–39

    Google Scholar 

  • Bhargava ON, Frank W, Bertle R (2011a) Late Cambrian deformation in the Lesser Himalaya. J Asian Earth Sci 40:201–212

    Article  Google Scholar 

  • Bhargava ON, Kaur G, Deb M (2011b) A Paleoproterozoic paleosol horizon in the Lesser Himalaya and its regional implications. J Asian Earth Sci 42:1371–1380

    Article  Google Scholar 

  • Bhargava ON, Thoni M, Miller C (2016) Isotopic evidence of Early Palaeozoic metamorphism in the Lesser Himalaya (Jutogh Group), Himachal Pradesh, India: its implication. Himalayan Geol 37(2):73–84

    Google Scholar 

  • Bhatia SB (2000) Faunal and floral diversity in the Subathu-Dgshai Passage Beds: a review. Himalayan Geol 21:87–97

    Google Scholar 

  • Bhatia SB, Bhargava ON (2006) Biochronological continuity of the Paleogene sediments of the Himalayan Foreland Basin: paleontological and other evidences. J Asian Earth Sci 26:477–487

    Article  Google Scholar 

  • Bhatt DK (1989) Small shelly fossils, Tommotian and Meishucunian stages and the Precambrian-Cambrian boundary—implications of the recent studies in the Himalayan sequences. J Palaeont Soc India 34:55–68

    Google Scholar 

  • Bhatt DK, Mamgain AK, Misra RS (1985) Small shelly fossils of Early Cambrian (Tommotian) age from Chert-Phosphorite Member, Tal Formation, Mussoorie syncline, Lesser Himalaya, India and their chronostratigraphic evaluation. J Palaeont Soc India 30:92–102

    Google Scholar 

  • Biswas S, Coutand I, Grujic D, Hager C, Stockli D, Grasemann B (2007) Exhumation and uplift of the Shillong Plateau and its influence on the eastern Himalayas: new constraints from apatite and zircon (U-Th-[Sm])/He and apatite fission track analyses. Tectonics 26:TC6013. https://doi.org/10.1029/2007tc002125

  • Bodenhausen JWA, DeBooy T, Egelar CG, Nijhuis HJ (1964) On the geology of Central west Nepal—a preliminary note. In: 22nd International geological congress, vol 11, New Delhi. Special Publications, pp 101–122

    Google Scholar 

  • Bordet P, Colchen M, Krummenacher D, Le FP, Mouterde R, Remmy M (1971) Recherches géologiques dans l’Himalaya du Nepal de la Thakkola. Coll Int Centre Nat Rech Sci Sci Terre 1–279

    Google Scholar 

  • Boyer SE, Elliott D (1982) Thrust systems. Am Assoc Petrol Geol Bull 66:1196–1230

    Google Scholar 

  • Brasier MD, Singh P (1987) Microfossils and Precambrian-Cambrian boundary stratigraphy at Maldeota, Lesser Himalaya. Geol Mag 124:323–345

    Article  Google Scholar 

  • Brookfield ME (1993) The Himalayan passive margin from Precambrian to the Cretaceous times. Sediment Geol 84:1–35

    Article  Google Scholar 

  • Brookfield ME, Algeo TJ, Hannigan R, Williams J, Bhat GM (2013) Shaken and Stirred: Seismites and Tsunamites at the Permian-Triassic Boundary, Guryul Ravine, Kashmir, India. Palaios 28:568–582

    Article  Google Scholar 

  • Brosse M, Baud A, Bhat GM, Bucher H, Leu M, Vennemann T, Goudemand N (2017) Conodont–based Griesbachian biochronology of the Guryul Ravine section (basal Triassic, Kashmir, India. Geobios 50(5–6):359–387. https://doi.org/10.1016/j.geobios.2017.10.001

    Article  Google Scholar 

  • Burbank DW (1992) Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges Basin. Nature 357:680–682

    Article  Google Scholar 

  • Burchfiel BC, Royden LH (1985) North-south extension within the convergent Himalayan region. Geology 13:679‒682

    Google Scholar 

  • Burchfiel BC, Zhilang C, Hodges KV, Yuping L, Roden LH, Changong D, Jiene X (1992) The South Tibetan detachment system, Himalayan orogen: extension contemporaneous with parallel to shortening in collisional mountain belt. Geol Soc Am Bull 269:1–42

    Google Scholar 

  • Bürgmann R, Larson KM, Bilham R (1999) Model inversion of GPS and leveling measurements across the Himalaya: implications of earthquake hazards and geodetic networks. Himalayan Geol 20:59–72

    Google Scholar 

  • Burrard SG (1915) Origin of the Gangetic Trough, commonly called the Himalayan foredeep. Proc R Soc Lond 91:220–238

    Google Scholar 

  • Butler RWH (2018) Tectonic evolution of the Himalayan syntaxes: the view from Nanga Parbat. Geol Soc Lond Spec Publ 483. https://doi.org/10.1144/sp483.5

  • Caddick M, Bickle M, Harris N, Holland T, Horstwood M, Parrish RR, Ahmad T (2007) Burial and exhumation history of a Lesser Himalayan schist: recording the formation of an inverted metamorphic sequence in NW India. Earth Planet Sci Lett 264:375–390

    Google Scholar 

  • Carosi R, Lombardo B, Molli G, Musumeci G, Pertusati PC (1998) The south tibetan detachment system in the Rongbuk valley, Everest region: deformation features and geological implications. J Asian Earth Sci 16:299–311. https://doi.org/10.1016/S0743-9547(98)00014-2

  • Carosi R, Montomoli C, Laccarino S (2018) 20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas. Earth Sci Rev 177:124‒138

    Google Scholar 

  • Cawood PA, Johnson MRW, Nemchin AA (2007) Early paleozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth Planet Sci Lett 255:70–84

    Google Scholar 

  • Cawood PA, Wang Y, Xu Y, Zhao G (2013) Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology 41(8):903–906. https://doi.org/10.1130/G34395.1

  • Célérier J, Harrison TM, Webb AAA, Yin A (2009) The Kumaun and Garhwal Lesser Himalaya, India. Part 1. Structure and stratigraphy. Geol Soc Am Bull 121:1262–1280

    Google Scholar 

  • Chakraborty S, Anczkiewicz R, Gaidies F, Rubatto D, Sorcar N, Faak K, Mukhopadhyay DK, Dasgupta S (2016) A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for rates of metamorphic processes. J Metamor Geol 34:785–803

    Article  Google Scholar 

  • Chaubey RS, Singh Birendra P, Mikuláš R, Bhargava ON, Kishore N, Prasad SK (2018) Integrated Ichnological and sedimentological analysis of the Cambrian Kunzam La (Parahio) Formation, Shian Section, Pin Valley, Spiti, Northwest Himalaya. Int J Stratig Geol Correl 26(7):709–721

    Google Scholar 

  • Chemenda AI, Burg JP, Mattauer M (2000) Evolutionary model of the Himalaya–Tibet system: geopoem based on new modeling, geological and geophysical data. Earth Planet Sci Lett 174:397–409

    Google Scholar 

  • Chirouze F, Huyghe P, van der Beek P, Chauvel C, Chakraborty T, Dupont-Nivet G, Bernet M (2013) Tectonics, exhumation, and drainage evolution of the eastern Himalaya since 13 Ma from detrital geochemistry and thermochronology, Kameng River Section, Arunachal Pradesh. Geol Soc Am Bull 125(3/4):523–538. https://doi.org/10.1130/B30697.1

  • Clarke GL, Bhowmik SK, Ireland TR, Aitchison JC, Chapman SL, Kent L (2016) Inverted Oligo-Miocene metamorphism in the Lesser Himalaya Sequence, Arunachal Pradesh, India; age and grade relationships. J Metamor Geol 34:805–820

    Article  Google Scholar 

  • Cleal CJ, Bhat GM, Singh KJ, Dar AM, Saxena A, Chandra S (2016) Spondylodendron pranabii—the dominant lycopsid of the late Mississippian vegetation of the Kashmir Himalaya. Alcheringa 40(4):443–455

    Google Scholar 

  • Clift PD (2017) Cenozoic sedimentary records of climate–tectonic coupling in the Western Himalaya. Progr Earth Planet Sci 4:39. https://doi.org/10.1186/s40645-017-0151-8

  • Copley A, Avouac JP, Royer JY (2010) India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J Geoph Res 95: B03410. https://doi.org/10.1029/2009JB006634

  • Corrie SL, Kohn MJ, Vervoort JD (2010) Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth Planet Sci Lett 289:406–416

    Google Scholar 

  • Cottle JM, Jessup MJ, Newell DL, Searle MP, Law RD, Horstwood MSA (2007) Structural insights into the early stages of exhumation along an orogen-scale detachment: the south tibetan detachment system, Dzakaa Chu section, Eastern Himalaya. J Struct Geol 29:1781–1797. https://doi.org/10.1016/j.jsg.2007.08.007

  • Cottle JM, Jessup MJ, Newell DL, Matthew S, Horstwood A, Noble SR, Parrish RR, Waters DJ, Searle MP (2009) Geochronology of granulitizedeclogite from the AmaDrime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics 28:1–25 TC1002. https://doi.org/10.1029/2008tc002256

  • Cottle JM, Waters DJ, Riley D, Beyssac O, Jessup MJ (2011) Metamorphic history of the south tibetan detachment system, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling. J Metamor Geol 29:561–582. https://doi.org/10.1111/j.1525-1314.2011.%2000930.x

  • Coutand I, Whipp DM, Grujic D, Bernet M, Fellin MG, Bookhagen B, Landry KR, Ghalley SK, Duncan C (2014) Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data. J. Geophys Res (Solid Earth) 119(2):1446–1481. https://doi.org/10.1002/2013JB010891

    Article  Google Scholar 

  • Daniel CG, Hollister LS, Parrish RR, Grujic D (2003) Exhumation of the Main Central Thrust from Lower Crustal Depths, Eastern Bhutan Himalaya. J Metamor Geol 21:317–334

    Article  Google Scholar 

  • Das BP, Joshi M, Kumar A (2019) Tectonochemistry and P-T Conditions of Ramgarh and Almora Gneisses from Askot Klippe, Kumaun Lesser Himalaya. Acta Geol Sin 93(2):322–343

    Article  Google Scholar 

  • Dasgupta S (1995) Jaishidanda Formation. In: Bhargava ON (Ed) Bhutan Himalaya: a geological account. Geol Surv India Spec Publ 39:79–88

    Google Scholar 

  • Dasgupta S, Ganguly J, Neogi S (2004) Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P-T gradient and implications. J Metamor Geol 22:395–412

    Article  Google Scholar 

  • Davidson C, Grujic DE, Hollister LS, Schmid SM (1997) Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite, High Himalayan crystallines, Bhutan. J Metamor Geol 15:593–612. https://doi.org/10.1111/j.1525-1314.1997.00044.x

    Article  Google Scholar 

  • de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–490

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, Lareau B, Spurlin M (2000) Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288:497–499

    Article  Google Scholar 

  • DeCelles PG, Robinson DM, Quade J, Ojha TP, Garzione CN, Copeland P, Upreti BN (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold–thrust belt in western Nepal. Tectonics 20:487–509

    Google Scholar 

  • Dewey JF, Bird JM (1970) Mountain belts and the new global tectonics. J Geophys Res 75:2625–2647

    Google Scholar 

  • Dèzes PJ, Vannay JC, Steck A, Bussy F, Cosca M (1999) Synorogenic extension: quantitative constraints on the age and displacement of the Zanskar shear Zone. Geol Soc Amer Bull 111:364–374

    Google Scholar 

  • Dhiman R, Singh S (2020) Neoproterozoic and Cambro-Ordovician magmatism: episodic growth and reworking of continental crust, Himachal Himalaya, India. Intern Geol Rev. https://doi.org/10.1080/00206814.2020.1716399

  • Dhital MR (2015) Geology of the Nepal Himalaya Regional Perspective of the Classic Collided Orogen. Springer, Berlin, pp 498

    Google Scholar 

  • Draganits E, Grassemann B, Schmid HP (2003) Fluidization of pipes and spring pits in a Gondwana barrier–island environment: groundwater phenomenon, paleoseisimicity or a combination of both, In: Maltman AJ, Morley CK (eds) Subsurface mobilization, vol 216. Geol Soc of London, Spec Publ, pp 109–121

    Google Scholar 

  • Epard JL, Steck A (2008) Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics 451:242–264

    Article  Google Scholar 

  • Etienne JL, Allen PA, le Guerroué E, Heaman L, Ghosh SK, Islam R (2011) The Blaini formation of the lesser Himalaya, NW India. In: Arnaud E, Halverson GP, Shields-Zhou G (eds) The geological record of neoproterozoic glaciations, vol 36. Mem Geol Soc London, pp 347–355. https://doi.org/10.1144/m36.31

  • Finch M, Hasalová P, Weinberg RF, Mark Fanning CM (2014) Switch from thrusting to normal shearing in the Zanskar shear zone, NW Himalaya: implications for channel flow. Geol Soc Am Bull 126(7–8):892–924. https://doi.org/10.1130/B30817.1

  • Frank W, Thoni M, Purtscheller F (1977) Geology and petrography of Kulu-South Lahul area. Ecologie geol l’Himalaya Paris 33:147–172

    Google Scholar 

  • Fuchs G (1967) Zum Bau des Himalaya. Denksch Kaiserlichen Akad Wissensch/Math–Naturwissen Classe 113:1–211

    Google Scholar 

  • Fuchs G (1982) The geology of the Pin valley in Spiti, Himachal Pradesh India. Neues Jahrb Geol Bundesanst 124:325–359

    Google Scholar 

  • Gaetani M, Nicora A, Premoli SI, Fois E, Garzanti E, Tintori A (1983) Upper Cretaceous and Paleocene in Zanskar Range (NW Himalaya). Rivista Italiana Paleont Stratig 89:81–118

    Google Scholar 

  • Gaetani M, Casnedi R, Fois E, Garzanti E, Jadoul F, Nicora A, Tintori A (1986) Stratigraphy of the Tethys Himalaya in Zanskar, Ladakh. Rivista Italiana Paleont Stratig 91:443–478

    Google Scholar 

  • Ganai JA, Rashid SA (2019) Anoxia and fluctuating climate recorded from the Devonian-Carboniferous black shales, Tethys Himalaya, India: a multi-proxy approach. Int J Earth Sci 108:863–883

    Article  Google Scholar 

  • Ganai JA, Rashid SA, Masroor A (2016) Petrography and geochemical studies of Upper Paleozoic sandstones from the Tethys Himalaya, Spiti Valley, Himachal Pradesh. J Appl Geochem 18:3–14

    Google Scholar 

  • Ganguly J, Dasgupta S, Cheng W, Neogi S (2000) Exhumation history of a section of the Sikkim Himalaya, India: records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet Sci Lett 183:471–486

    Article  Google Scholar 

  • Ganju JL, Khar BM (1984) Tectonics and Hydrocarbon prospect of Kashmir Valley-possible exploratory targets. Petrol Asian J 3:207–216

    Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Lond Intersci Publ, pp 1–289

    Google Scholar 

  • Gansser A (1983) Geology of the Bhutan Himalaya. Birkhäuser Verlag, Basel, pp 1–181

    Google Scholar 

  • Garzanti E, Angiolini L, Brunton H, Sciunnach D, Balini M (1998) The bashkirian fenestella shales and the moscovian chaetetid shales of the Tethys Himalaya: south Tibet, Nepal and India. J Asian Earth Sci 16:119–141

    Google Scholar 

  • Gavillot Y, Meigs AJ, Sousa FJ, Stockli D, Yule D, Malik M (2018) Late Cenozoic foreland-to-hinterland low-temperature exhumation history of the Kashmir Himalaya. Tectonics 37. https://doi.org/10.1029/2017tc004668

  • Gehrels GE, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A (2011) Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30 TC5016. https://doi.org/10.1029/2011tc002868

  • Geological Survey of India Map (1999)

    Google Scholar 

  • Ghosh SK (1991) Palaeoenvironmental analysis of late Proterozoic Nagthat Formation, NW Kumaun Lesser Himalaya, India. Sediment Geol 71:33–45

    Article  Google Scholar 

  • Ghosh NP, Basu AR, Bhargava ON, Shukla UK, Ghatak A, Garzione NC, Ahluwalia AD (2016) Catastrophic environmental transition at the Permian-Triassic Neo-Tethyan margin of Gondwanaland: Geochemical, isotopic and sedimentological evidence in the Spiti Valley, India. Gondwana Res 34:324–345

    Google Scholar 

  • Godin D, Grujic D, Law RD, Searle MP (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. In: Law RD, Searle MP, and Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones. Geol Soc, London Spec Publ 268:1–23

    Google Scholar 

  • Gokul AR (1983) Geological and Mineral Map of Bhutan: Scale 1:500,000, 1 sheet, Geol. Surv. India Map Printing Div Hyderabad

    Google Scholar 

  • Goswami-Banerjee S, Bhowmik SK, Dasgupta S, Pant NC (2014) Burial of thermally perturbed Lesser Himalayan mid-crust: Evidence from petrochemistry and P-T estimation of the western Arunachal Himalaya, India. Lithos 208–209:298–311

    Article  Google Scholar 

  • Govin G, Najman Y, Dupont-Nivet G, Millar I, van Der Beek P, Huyghe P, Sullivan P, Mark C, Vögeli N (2018) The tectonics and paleo-drainage of the easternmost Himalaya (Arunachal Pradesh, India) recorded in the Siwalik rocks of the foreland basin. Am J Sci 318:764–798

    Article  Google Scholar 

  • Griesbach CL (1889) Geological notes—a sequence of formations in Spiti. Rec Geol Surv India 22:158–167

    Google Scholar 

  • Griesbach CL (1891) Geology of the Central Himalayas. Mem Geol Surv India 23:1–232

    Google Scholar 

  • Groppo C, Lombardo B, Rolfo F, Pertusati P (2007) Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalaya). J Metamor Geol 25:51–75

    Article  Google Scholar 

  • Grujic D (2006) Channel flow and continental collision tectonics. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones, vol 268. Geol Soc Spec Publ, pp 25–37

    Google Scholar 

  • Grujic D, Casey M, Davidson C, Hollister LS, Kündig R, Pavlis T, Schmid S (1996) Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43

    Article  Google Scholar 

  • Guha Sarkar TK, Singh Gaur SK (1963) Geology of Hatisar–Kakulang river area, Tongsta, Bhutan. Geol Surv India (Unpubl Rept FS 1962–63)

    Google Scholar 

  • Guillot S, de Sigoyer J, Lardeaux JM, Mascle G, Colchen M (1997) Eclogitic metasediments from the Tso Morari area (Ladakh Himalaya): evidence for continental subduction during India-Asia convergence. Contrib Mineral Petrol 128:197–212

    Article  Google Scholar 

  • Guillot S, Mahéo G, de Sigoyer J, Hattori KH, Pêcher A (2008) Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics 451:225–241

    Article  Google Scholar 

  • Guo X, Li W, Gao R, Xu X, Li H, Huang X, Ye Zh, Lu Zh, Klemper SL (2017) Nonuniform subduction of the Indian crust beneath the Himalayas. Sci Reports 7:12497. https://doi.org/10.1038/s41598-017-12908-0

  • Hagen T (1968) Report on the Geological survey of Nepal, 2. Geology of Thakkola including adjacent areas. Denkschr Schweiz naturfor Gesellsch 86:1–160

    Google Scholar 

  • Harris NBW, Caddick M, Kosler J, Goswami S, Vance D, Tindle AG (2004) The pressure–temperature–time path of migmatites from the Sikkim Himalaya. J Metamor Geol 22:249–264

    Google Scholar 

  • Harrison TM, Grove M, Lovera M, Catlos EJ (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res 103:27017–27032

    Article  Google Scholar 

  • Hashimoto H, Ohta Y and Akiba C (eds) (1973) Geology of Nepal Himalaya. Hokkaido Univ Sapporo Japan, pp 1–281

    Google Scholar 

  • Hayden HH (1904) The geology of Spiti with parts of Bashahr and Rupshu. Mem Geol Surv India 36:1–121

    Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya: geological observations of the Swiss expedition 1936. Mem Soc Helv Sci Nat 73:1–245

    Google Scholar 

  • Herman F, Copeland P, Avouac JP, Bollinger L, Maheo G, Le Fort P (2010) Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J Geophys Res 115:B06407. https://doi.org/10.1029/2008JB006126

    Article  Google Scholar 

  • Herren E (1987) Zanskar Shear Zone: northeast-southwest extension within the Higher Himalaya (Ladakh, India). Geology 15:409–413

    Google Scholar 

  • Hodges KV, Parrish RR, Searle MP (1996) Tectonics evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics 15(6):1264–1291. https://doi.org/10.1029/96TC01791

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  Google Scholar 

  • Hofmann M, Linnemann U, Rai V, Becker S, Gärtner A, Sagawe A (2011) The India and South China cratons at the margin of Rodinia—Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses. Lithos 123:176–187

    Article  Google Scholar 

  • Honegger K, Dietrich J, Frank W, Gansser A, Thoni M, Trommsdorff W (1982) Magmatism and metamorphism: the Indus Tsangpo Suture Zone. Earth Planet Sci Lett 60:253–292. https://doi.org/10.1007/s00410-013-0957-3

    Article  Google Scholar 

  • Hou G, Santosh M, Qian X, Lister GS, Li J (2008) Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Res 14:395–409

    Article  Google Scholar 

  • Huang Y, Chena Z-Q, Algeo TJ, Zhao L, Baud A, Bhat GM, Zhang L, Guo Z (2019) Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmir, northern India: pyrite framboid evidence. Global Planet Change 172:124–139. https://doi.org/10.1016/j.gloplacha.2018.10.002

    Article  Google Scholar 

  • Hughes NC (2016) The Cambrian palaeontological record of the Indian subcontinent. Earth Sci Rev 159:428–461

    Article  Google Scholar 

  • Hughes NC, Peng S, Bhargava ON, Ahulwalia AD, Walia S, Myrow PM, Parcha SK (2005) The Cambrian biostratigraphy of the Tal Group, Lesser Himalaya, India, and early Tsanglangpuan (late early Cambrian) trilobites from the Nigali Dhar Syncline. Geol Mag 142:57–80

    Article  Google Scholar 

  • Hughes NC, Myrow PM, Peng S, Banerjee DM (2018) The Parahio Formation of the Tethyan Himalaya: The type section, thickness, lithostratigraphy and biostratigraphy of the best characterized Cambrian section in the Himalaya. J Palaeontol Soc India 63(1):1–18

    Google Scholar 

  • Hughes NC, Myrow PM, Ghazi S, McKenzie NR, Stockli DF, DiPietro JA (2019) Cambrian geology of the Salt Range of Pakistan: linking the Himalayan margin to the Indian craton. Bull Geol Soc Am 131(7/8):1095–1114. https://doi.org/10.1130/B35092.1

    Article  Google Scholar 

  • Hussain A, Yeats RS, Lisa M (2009) Geological setting of the 8th October, 2005 Kashmir earthquake. J Seismol 13:315–325. https://doi.org/10.1007/s/10950-800-9101-7

    Article  Google Scholar 

  • Iaccarino S, Montomoli C, Carosi R, Montemagni C, Massonne H-J, Langone A, Jain AK, Visonà D (2017) Pressure-temperature-deformation-time constraints on the South Tibetan Detachment System in the Garhwal Himalaya (NW India). Tectonics 36. https://doi.org/10.1002/2017TC004566

  • Jade S, Shrungeshwara TS, Kumar K, Choudhury P, Dumka RK, Bhu H (2017) India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Scientific Rep 7:11439. https://doi.org/10.1038/s41598-017-11697-w

  • Jain AK, Goel RK, Nair NGK (1980) Implications of Pre-Mesozoic geological evolution of the Himalaya and Indo-Gangetic Plains. Tectonophysics 62:76‒86

    Google Scholar 

  • Jain AK (1981) Stratigraphy, petrography and paleogeography of the Late Paleozoic diamictites of the Lesser Himalaya. Sed Geol 30:43–78

    Google Scholar 

  • Jain AK (2014) When did India-Asia collide and make the Himalaya? Curr Sci 106(2):254–266

    Google Scholar 

  • Jain AK (2017) Continental subduction in the NW-Himalaya and Trans-Himalaya. Ital J Geosci 136(1):89–102. https://doi.org/10.3301/IJG.2015.43

    Article  Google Scholar 

  • Jain AK (2020) Geological evolution of the Himalayan Mountains. In: Gupta N, Tandon SK (eds) Geodynamics of the Indian Plate: evolutionary perspectives. Springer Geology pp 363–393. https://doi.org/10.1007/978-3-030-15989-4_10

  • Jain AK, Balasubramanian E (1981) Late Paleozoic diamictites of the eastern himalayan Gondwana belt, India. In: Hambrey MJ, Harland WB (eds) Earth’s pre-pleistocene glacial record. Cambridge Univ Press pp 308–325

    Google Scholar 

  • Jain AK, Manickavasagam RM (1993) Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology 21:407–410

    Google Scholar 

  • Jain AK, Manickavasagam RM (eds) (1999) Geodynamics of the NW Himalaya. Gondwana Res Mem 6

    Google Scholar 

  • Jain AK, Patel RC (1999) Structure of the higher himalayan crystallines along the Suru-Doda valleys (Zanskar), NW Himalaya. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya. Gondwana Res Group Mem 6:91–110

    Google Scholar 

  • Jain AK, Singh S (2009) Geology and Tectonics of the Southeastern Ladakh and Karakoram. Geol Soc India Bangalore India 1–179

    Google Scholar 

  • Jain AK, Varadaraj N (1978) Stratigraphy and provenance of Late Palaeozoic diamictites in parts of Garhwal Lesser Himalaya, India. Geol Rund 67:49–72

    Article  Google Scholar 

  • Jain AK, Thakur VC, Tandon SK (1974) Stratigraphy and structure of the Siang District of Arunachal Pradesh. Himalayan Geol 4:28–60

    Google Scholar 

  • Jain AK, Singh S, Manickavasagam RM (2002) Himalayan Collision Tectonics. Gondwana Res Group Mem 7:114

    Google Scholar 

  • Jain AK, Manickavasagam RM, Singh S, Mukherjee S (2005) Himalayan collision zone: new perspectives—its tectonic evolution in a combined ductile shear zone and channel flow model. Himalayan Geol 26(1):1‒18

    Google Scholar 

  • Jain AK, Kumar D, Singh S, Kumar A, Lal N (2000) Timing, quantification and tectonic modelling of Pliocene-Quaternary movements in the NW Himalaya: Evidence from fission track dating. Earth Planet Sci Lett 179:437–451

    Google Scholar 

  • Jain AK, Singh S, Manickavasagam RM, Joshi M, Verma PK (2003) HIMPROBE Programme: integrated Studies on Geology, Petrology, Geochronology and Geophysics of the Trans-Himalaya and Karakoram. Mem Geol Soc India 53:1–56

    Google Scholar 

  • Jain AK, Lal N, Sulemani B, Awasthi AK, Singh S, Kumar R, Kumar D (2009) Detrital-zircon fission-track ages from the Lower Cenozoic sediments, NW Himalayan foreland basin: clues for exhumation and denudation of the Himalaya during the India-Asia collision. Geol Soc Am Bull 121:519–535

    Google Scholar 

  • Jain AK, Seth P, Shreshtha M, Mukherjee PK, Singh K (2013) Structurally-controlled melt accumulation: Himalayan migmatites and related deformation, Dhauli Ganga Valley, Garhwal Himalaya. J Geol Soc India 82:313‒318

    Google Scholar 

  • Jain AK, Shrestha M, Seth P, Kanyal L, Carosi R, Montomoli C, Iaccarino S, Mukherjee PK (2014) The Higher Himalayan Crystallines, Alaknanda–Dhauli Ganga Valleys, Garhwal Himalaya, India. In: Montomoli C, Carosi R, Law RD, Singh S, Rai SM (eds) Geological field trips in the Himalaya, Karakoram and Tibet. J Virtual Expl Electr Edit 47 paper 8, ISSN 1441–8142

    Google Scholar 

  • Jain AK, Mukherjee PK, Singhal S (2020) Terrane characterization in the Himalaya since Paleoproterozoic. Episodes 43(1):346–357. https://doi.org/10.18814/epiiugs/2020/020021

  • Jangpangi BS (1974) Stratigraphy and tectonics of parts of eastern Bhutan. Himalayan Geol 4:117–136

    Google Scholar 

  • Jasper A, Guerra SM, Abdalla MB, Hamad A, Bamford M, Bernardes-de-Oliveira MC, Tewari R, Uhl D (2016) The burning of Gondwana: Permian fires on the southern continent—a palaeobotanical approach. Gondwana Res 24:148–160

    Article  Google Scholar 

  • Jell PA, Hughes NC (1997) Himalayan Cambrian trilobites. Spec Pap Palaeont 58:1–113

    Google Scholar 

  • Jiang G, Christie BN, Kaufman AJ, Banerjee DM, Rai V (2002) Sequence stratigraphy of the Neoproterozoic Infra Krol formation and Krol Group, Lesser Himalaya, India. J Sedim Res 72(4):524–542

    Article  Google Scholar 

  • Jiang G, Christie BN, Kaufman AJ, Banerjee DM, Rai V (2003) Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India. Sediment 50:921–952

    Article  Google Scholar 

  • Joshi A (1995) Setikhola formation. In: Bhargava ON (ed) Bhutan Himalaya: a geological account, vol 39. Geol Surv India Spec Publ, pp 34–37

    Google Scholar 

  • Kaneda H, Nakata T, Tsutsumi H, Kondos SN, Awata Y, Akhtar S, Majid A, Khatak W, Awan A, Yeats RS, Hussain A, Ashra M, Wesnousky SG, Kausar B (2008) Surface rupture of the 2005 Kashmir, Pakistan earthquake and its active tectonic implications. Bull Seism Soc Am 98:512–557

    Google Scholar 

  • Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman HU, Kausar AB, Shiraishi K (2003) Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamor Geol 21(6):589–599

    Article  Google Scholar 

  • Kapoor HM, Maheshwari HK (1991) Early Permian paleogeography of the Peri-Gondwana in the Indian Segment. Curr Sci 61:648–653

    Google Scholar 

  • Kapoor HM, Bajpai U, Maheshwari HK (1993) On a fossil cockroach from the Mamal Formation, Kashmir Himalaya. J Paleont Soc India 38:31–36

    Google Scholar 

  • Kapoor HM, Maheshwari HK, Bajpai U (2004) Evolutionary history of the northern margin of Gondwana Supercontinent during the Late Palaeozoic. In: Srivastava PC (ed) Vistas in Palaeobotany and plant morphology: evolutionary and environmental perspective. Lucknow, pp 119–131

    Google Scholar 

  • Karunakaran C, Rao R (1979) Status of hydrocarbon in the Himalayan region: contributions to stratigraphy and structure. Geol Sur India Misc Publ 41:1–67

    Google Scholar 

  • Kaufman AJ, Jiang G, Christie BN, Banerjee DM, Rai V (2006) Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precamb Res 147:156–185. https://doi.org/10.1016/j.precamres.2006.02.007

    Article  Google Scholar 

  • Kaur P, Zeh A, Chaudhri N, Gerdes A, Okrusch M (2013) Nature of magmatism and sedimentation at a Columbia active margin: insights from combined U-Pb and Lu–Hf isotope data of detrital zircons from NW India. Gondwana Res 23(3):1040–1052. https://doi.org/10.1016/j.gr.2012.07.008

    Article  Google Scholar 

  • Kellett DA, Grujic D (2012) New insight into the south tibetan detachment system: not a single progressive deformation. Tectonics 31:TC2007. https://doi.org/10.1029/2011TC002957

  • Kellett DA, Grujic D, Erdmann S (2009) Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: implications for continental collision. Lithosphere 1:259–281

    Article  Google Scholar 

  • Kellett DA, Grujic D, Warren C, Cottle J, Jamieson R, Tenzin T (2010) Metamorphic history of a syn-convergent orogen-parallel detachment: the south tibetan detachment system, Bhutan Himalaya. J Metamor Geol 28:785–808. https://doi.org/10.1111/j.1525-1314.2010.00893.x

  • Kellett DA, Grujic D, Coutand I, Cottle J, Mukul M (2013) The South Tibetan detachment system facilitates ultra rapid cooling of granulite–facies rocks in Sikkim Himalaya. Tectonics 32:252–270. https://doi.org/10.1002/tect.(2014)

    Article  Google Scholar 

  • Khan MA, Treloar PJ, Searle MP, Jan MQ (eds) (2000) Tectonics of the Nanga Parbat Syntaxis and the Western Himalayas. Geol Soc London Spec Publ 170

    Google Scholar 

  • Khanal S, Robinson DM, Mandal S, Simkhada P (2015) Structural, geochronological and geochemical evidence for two distinct thrust sheets in the “Main Central thrust zone”, the Main Central thrust and Ramgarh–Munsiari thrust: implications for upper crustal shortening in the central Nepal. In: Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK, Robinson DM (eds) Tectonics of the Himalaya, vol 412. Geol Soc London Spec Publ, pp 221–245. https://doi.org/10.1144/sp412.2

  • King GE, Herman F, Guralnik B (2016) Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry. Science 353(6301):800–804. https://doi.org/10.1126/science.aaf2637

    Article  Google Scholar 

  • Klootwijk CT, Gee JS, Peirce JW, Smith GM (1992) Neogene evolution of the Himalayan-Tibetan region: constraints from ODP site 758, northern Ninety East Ridge: bearing on climatic change. Palaeogeog Palaeoclim Palaeoeco 95:95–110

    Article  Google Scholar 

  • Kohn M (2014) Himalayan metamorphism and its tectonic implications. Ann Rev Earth Planet Sci 42:381–419

    Article  Google Scholar 

  • Kohn MJ, Paul SK, Corrie SL (2010) The lower Lesser Himalayan sequence: a Paleoproterozoic arc on the northern margin of the Indian plate. Geol Soc Am Bull 122:323–335

    Article  Google Scholar 

  • Kumar S (1980) Stromatolites and Indian biostratigraphy. J Paleont Soc India 23–24:166–183

    Google Scholar 

  • Kumar G (1997) Geology of Arunachal Pradesh. Geol Soc India Bangalore pp 1−217

    Google Scholar 

  • Kumar R (2020) Late Cenozoic Himalayan foreland basin: sedimentologic attributes. Episodes 43(1):417–428. https://doi.org/10.18814/epiiugs/2020/020026

  • Kumar S, Mahajan AK (2001) Seismotectonics of the Kangra region, Northwest Himalaya. Tectonophysics 331:359–371

    Article  Google Scholar 

  • Kumar G, Mehdi SH, Prakash G (1972) A review of stratigraphy of parts of Uttar Pradesh Tethys Himalaya. J Palaeont Soc India 15:86–89

    Google Scholar 

  • Kumar S, Singh IB, Singh SK (1977) Lithostratigraphy, structure, depositional environment, palaeocurrent and trace fossils of the Tethyan sediments of Malla Johar area, Pithoragarh–Chamoli districts, Uttar Pradesh, India. J Palaeont Soc India 20:396–435

    Google Scholar 

  • Kumar G, Raina BK, Bhargava ON, Maithy PK, Babu R (1984) The Precambrian-Cambrian boundary problem and its prospects, northwest Himalaya, India. Geol Mag 121:211–219

    Article  Google Scholar 

  • Kumar A, Lal N, Jain AK, Sorkhabi RB (1995) Late Cenozoic-Quaternary thermotectonic history of Higher Himalayan Crystallines (HHC) in Kishtwar-Padar-Zanskar region, NW Himalaya: Evidence from fission track ages. J Geol Soc India 45:375–391

    Google Scholar 

  • Kumar R, Ghosh SK, Sangode SJ (1999) Role of thrusting in the evolution fluvial system, Himalayan Foreland Basin, India. In: Macfarlane A, Sorkhabi RB, Quade J (eds) Himalayan and Tibet: Mountain Roots to Mountain Tops, vol 328. Geol Soc Am Spec Publ, pp 239–256

    Google Scholar 

  • Kumar R, Ghosh SK, Mazari RK, Sangode SJ (2003) Tectonic impact on fluvial deposits of Plio-Pleistocene Himalayan foreland basin, India. Sedim Geol 158:209–234

    Article  Google Scholar 

  • Kumar R, Ghosh SK, Sangode SJ (2004) Depositional environment of Mio-Pleistocene coarse clastic facies in the Himalayan foreland basin, India. Himalayan Geol 25:101–120

    Google Scholar 

  • Kumar R, Ghosh SK, Sangode SJ (2011) Sedimentary architecture of late Cenozoic Himalayan foreland basin fill: an overview. Mem Geol Soc India 78:245–280

    Google Scholar 

  • Kumar R, Jain AK, Nand Lal, Sandeep Singh (2018) Early-Middle Eocene exhumation of the Trans-Himalayan Ladakh Batholith, and the India-Asia convergence. Curr Sci 113:1090–1098

    Google Scholar 

  • Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophy Res 111:B03304. https://doi.org/10.1029/2004JB003309

  • Kundig R (1989) Domal structures and highgrade metamorphism in the Higher Himalayan Crystalline, Zanskar region, northwest Himalaya, India. J Metamor Geol 7:43–55

    Google Scholar 

  • Lahiri A (1941) Geology of Buxa Duars. Quart J Geol Min Met Soc India 13(1):1–62

    Google Scholar 

  • Lakshami KJP, Sudheer Kumar M, Bhalla MS, Rao GVSP (2000) Magnetostratigraphy of Himalayan sediments from Himachal Pradesh. J Indian Geophy Union 4(2):147–154

    Google Scholar 

  • Lakshminarayan G, Singh B (1995) Siwalik Group. In: Bhargava ON (ed) Bhutan Himalaya: a geological account, vol 39. Geol Surv India Spec Publ, pp 23–28

    Google Scholar 

  • Landry KR, Coutand I, Whipp DM Jr, Grujic D, Hourigan JK (2016) Late Neogene tectonically driven crustal exhumation of the Sikkim Himalaya: insights from inversion of multithermochronologic data. Tectonics 35. https://doi.org/10.1102/2015tc004102

  • Lang KA, Huntington KW, Burmester R, Housen B (2016) Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. Geol Soc Am Bull 128(9–10):1403–1422

    Article  Google Scholar 

  • Larson K, Piercey S, Cottle J (2017) Preservation of a Paleoproterozoic rifted margin in the Himalaya: Insight from the Ulleri-Phaplu-Melung orthogneiss. Geosci Front 1–13. https://doi.org/10.1016/j.gsf.2017.05.010

  • Lavé J, Avouac JP (2000) Active folding of fluvial terraces across the Siwalik Hills, the Himalayas of central Nepal. J Geophy Res 105(B3):5735–5770

    Article  Google Scholar 

  • Law RD, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan slab, Everest Massif, Tibet. J Geol Soc 161:305–320. https://doi.org/10.1144/0016-764903-047

  • Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM (2005) The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in W Himalaya. Earth Planet Sci Lett 234:83–97

    Article  Google Scholar 

  • Leech ML, Singh S, Jain AK (2007) Continuous metamorphic zircon growth and interpretation of U-Pb SHRIMP dating: an example from the Western Himalaya. Intl Geol Rev 49:313–328

    Article  Google Scholar 

  • Leloup PH, Mahéo G, Arnaud N, Kali E, Boutonnet E, Liu D, Xiaohan L’ Haibing L (2010) The south tibet detachment shear zone in the Dinggye area. Time constraints on extrusion models of the Himalayas. Earth Planet Sci Lett 292:1–16. https://doi.org/10.1016/j.epsl.2009.12.035

  • Li D, Liao Q, Yuan Y, Wan Y, Liu D, Zhang X, Yi S, Cao S, Xie D (2003) SHRIMP U-Pb zircon geochronology of granulites at Rimana (southern Tibet) in the central segment of the Himalayan orogen. Chinese Sci Bull 48:2647–2650

    Article  Google Scholar 

  • Liou JG, Tsujimori T, Zhang RY, Katayama I, Maruyama S (2004) Global UHP magmatism and metamorphism: the Indus Tsangpo Suture Zone. Earth Planet Sci Lett 60:253–292

    Google Scholar 

  • Long S, McQuarri N, Tobgay T, Rose C, Gehrels G, Grujic D (2011) Tectonostratigraphy of the Lesser Himalaya of Bhutan: implications for the along-strike stratigraphic continuity of the northern Indian margin. Geol Soc Am Bull 123(7/8):1406–1426. https://doi.org/10.1130/B30202.1

    Article  Google Scholar 

  • Luirei K, Bhakuni SS, Suresh N, Kothyari GC, Pant PD (2014) Tectonic geomorphology and morphometry of the frontal part of Kumaun Sub-Himalaya: appraisal of tectonic activity. Zeitsch Geomorph 58(4):435–458

    Google Scholar 

  • Lyon-Caen H, Molnar P (1985) Gravity anomalies, flexure of the Indian plate and the structure, support, and evolution of the Himalaya and Ganga basin. Tectonics 4:513–538

    Article  Google Scholar 

  • Mallet FR (1875) On the geology and mineral resources of Darjeeling district and western Duars. Mem Geol Surv India 11:1–50

    Google Scholar 

  • Mandal S, Robinson DM, Khanal S, Das O (2015) Redefining the tectonostratigraphic and structural architecture of the Almora klippe and the Ramgarh–Munsiari Thrust sheet in NW India. In: Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK, Robinson DM (eds) Tectonics of the Himalaya, vol 412. Geol Soc London Spec Publ, pp 247–269

    Google Scholar 

  • Mandal S, Robinson DM, Kohn MJ, Khanal S, Das O, Bose S (2016) Zircon U–Pb ages and Hf isotopes of the Askot klippe, Kumaun, northwest India: implications for Paleoproterozoic tectonics, basin evolution and associated metallogeny of the northern Indian cratonic margin. Tectonics 35:965–982. https://doi.org/10.1002/2015TC004064

  • Mandal SK, Scherler D, Romer RL, Burg JP, Guillong M, Schleicher AM (2019) Multiproxy isotopic and geochemical analysis of the Siwalik sediments in NW India: implication for the Late Cenozoic tectonic evolution of the Himalaya. Tectonics 38:120–143. https://doi.org/10.1029/2018TC005200

    Article  Google Scholar 

  • Manglik A, Adilakshmi L, Suresh M, Thiagarajan S (2015) Thick sedimentary sequence around Bahraich in the northern part of the central Ganga foreland basin. Tectonophy 653:33–40. http://doi.org/10.1016/j.tecto.2015.03.024

  • Manickavasagam RM, Jain AK, Singh S, Asokan A (1999) Metamorphic evolution of the NW–Himalaya, India: pressure-temperature data, inverted metamorphism, and exhumation in the Kashmir, Himachal, and Garhwal Himalaya. In: Macfarlane A, Sorkhabi RB, Quade J (eds) Himalaya and Tibet: Mountain Roots to Mountain Tops, vol 328. Geol Soc Am Spec Paper, pp 179–198

    Google Scholar 

  • Martin AJ (2017) A review of Himalayan stratigraphy, magmatism, and structure. Gondwana Res 49:42–80. https://doi.org/10.1016/j.gr.2017.04.031

    Article  Google Scholar 

  • Martin AJ, DeCelles PG, Gehrels GE, Patchett PJ, Isachsen C (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geol Soc Am Bull 117:926–944

    Article  Google Scholar 

  • Martin AJ, Burgy KD, Kaufman AJ, Gehrels GE (2011) Stratigraphic and tectonic implications of field and isotopic constraints on depositional ages of Proterozoic Lesser Himalayan rocks in central Nepal. Precamb Res 185:1–17

    Article  Google Scholar 

  • Mathur NS (1978) Biostratigraphical aspects of the Subathu Formation, Kumaun Himalaya. Recent Res Geol 5:96–112

    Google Scholar 

  • Mazumdar A, Banerjee DM (1998) Siliceous sponge in the Early Cambrian chert-phosphorite member of the Lower Tal Formation, Krol Belt, Lesser Himalaya. Geology 26:899–902

    Google Scholar 

  • Mazumdar A, Banerjee DM (2001) Regional variations in the carbon isotopic composition of phosphorite from the Early Cambrian Lower Tal Formation Mussoorie Hill, India. Chem Geol 175(1/2):5–16

    Article  Google Scholar 

  • Mazumdar A, Banerjee DM, Schidlowski M, Balaram V (1999) Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal formation of the Krol Belt (Lesser Himalaya, India). Chem Geol 156:275–297

    Article  Google Scholar 

  • McKenzie NR, Hughes NC, Myrow PM, Xiao S, Sharma M (2011) Correlation of Precambrian-Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet Sci Lett 312(3):471–483. https://doi.org/10.1016/j.epsl.2011.10.027

    Article  Google Scholar 

  • McQuarrie N, Robinson D, Long S, Tobgay T, Grujic D, Gehrels G, Ducea M (2008) Preliminary stratigraphic and structural architecture of Bhutan: implications for the along strike architecture of the Himalayan system. Earth Planet Sci Lett 272(1–2):105–117

    Article  Google Scholar 

  • McQuarrie N, Long S, Tobgay T, Nesbit JN, Gehrels G, Ducea MN (2013) Documenting basin scale, geometry and provenance through detrital geochemical data: Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan. Gondwana Res 23:1491–1510

    Article  Google Scholar 

  • McQuarrie N, Tobgay T, Long SP, Reiners PW, Cosca MA (2014) Variable exhumation rates and variable displacement rates: documenting a recent slowing of Himalayan shortening in western Bhutan. Earth Planet Sci Lett 286:161–174. https://doi.org/10.1016/j.epsl.2013.10.045

    Article  Google Scholar 

  • Medlicott HB (1864) On the geological structure and relations of the southern portion of the Himalayan ranges between rivers Ganges and the Ravi. Mem Geol Surv India 3(2):122

    Google Scholar 

  • Meigs AJ, Burbank DW, Beck RA (1995) Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology 23(5):423–426. https://doi.org/10.1130/0091-7613(1995)023%3c0423:mlmmfo%3e2.3.co;2

  • Metcalfe RP (1993) Pressure, temperature and time constraints on metamorphism across the Main Central thrust zone and High Himalayan slab in the Garhwal Himalaya. In: Treloar PJ, Searle MP (eds) Himalayan Tectonics, vol 74. Spec Publ Geol Soc London, pp 485–509

    Google Scholar 

  • Middlemiss CS (1909) Gondwana and related marine sedimentary systems of Kashmir. Rec Geol Surv India 37:286–327

    Google Scholar 

  • Middlemiss CS (1910) A revision of the Silurian-Triassic sequence in Kashmir. Rec Geol Surv India 40:206–260

    Google Scholar 

  • Middlemiss CS (1911) Sections in Pir-Panjal Range and Sind Valley, Kashmir. Rec Geol Surv India 41:85–137

    Google Scholar 

  • Miller C, Klotzli U, Frank W, Thoni M, Grasemann B (2000) Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism. Precamb Res 103:191–206

    Article  Google Scholar 

  • Misra RC, Banerjee DM (1968) Stratigraphy, correlation and tectonics of Sarju-Pungar valley areas, district Almora-Pithoragarh. Pub Centre Adv Studies Geol Chandigarh 4:101–113

    Google Scholar 

  • Molnar P, Lyon-Caen H (1988) Some simple physical aspects of the support, structure, and evolution of mountain belts. Processes in continental lithospheric deformation. Geol Soc Am Spec Pap 218:179–207

    Google Scholar 

  • Montemagni C, Montomoli C, Iaccarino S, Carosi R, Jain AK, Massonne H-J, Villa IM (2018) Dating protracted fault activities: microstructures, microchemistry and geochronology of the Vaikrita Thrust, Main Central Thrust zone, Garhwal Himalaya, NW India. Geol Soc, London, Spec Publ SP481.3. https://doi.org/10.1144/sp481.3

  • Montomoli C, Carosi R, Rubatto D, Visonà D, Iaccarino S (2017) Tectonic activity along the inner margin of the South Tibetan Detachment constrained by syntectonic leucogranite emplacement in Western Bhutan. Ital J Geosc, 136:5–14. https://doi.org/10.3301/IJG.2015.26

  • Mottram CM, Argles TW, Harris NBW, Parrish RR, Horstwood MSA, Warren CJ, Gupta S (2014a) Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. J Geol Soc London 171:255–268. https://doi.org/10.1144/jgs2013-064

    Article  Google Scholar 

  • Mottram CM, Warren CJ, Regis D, Roberts NM, Harris NB, Argles TW, Parrish RR (2014b) Developing an inverted Barrovian sequence: insights from monazite petrochronology. Earth Planet Sci Lett 403:418–431

    Article  Google Scholar 

  • Mugnier JL, Huyghe P, Leturmy P, Jouanne F (2004) Episodicity and rates of thrust-sheet motion in the Himalayas (western Nepal). In: McClay KR (ed) Thrust tectonics and hydrocarbon systems, vol 82. Mem Am Assoc Petrol Geol, pp 91–114

    Google Scholar 

  • Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK, Robinson DM (eds) (2015) Tectonics of the Himalaya. Geol Soc Lond Spec Publ 412

    Google Scholar 

  • Mukherjee PK, Jain AK, Singhal S, Singha NB, Singh S, Kumud K, Seth P, Patel RC (2019) U–Pb zircon ages and Sm–Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications. Gondwana Res 75:282–297. https://doi.org/10.1016/j.gr.2019.06.001

    Article  Google Scholar 

  • Mukhopadhyay DK, Chakraborty S, Trepmann C, Rubatto D, Anczkiewicz R, Gaidies F, Dasgupta S, Chowdhury P (2017) The nature and evolution of the Main Central Thrust: Structural and geochronological constraints from the Sikkim Himalaya, NE India. Lithos 282:447–463

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Paulsen TS, Williams IS, Parcha SK, Thompson KR, Bowring SA, Peng S, Ahluwalia AD (2003) Integrated tectonostratigraphic reconstruction of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212:433–441

    Article  Google Scholar 

  • Myrow PM, Thompson KR, Hughes NC, Paulsen TS, Sell BK, Parcha SK (2006) Cambrian stratigraphy and depositional history of the northern Indian Himalayas, Spiti Valley, north-central India. Geol Soc Am Bull 118:491–510

    Google Scholar 

  • Myrow PM, Hughes NC, Searle MP, Fanning CM, Peng S, Parcha SK (2009) Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya: implications for the age and nature of rocks in the Mt. Everest region. Bull Geol Soc Am 120:323–332

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Goodge JW, Fanning CM, Williams IS, Peng S, Bhargava ON, Parcha SK, Pogue KR (2010) Extraordinary transport and mixing of sediment across Himalayan central Ordovician-Gondwana during the Cambrian. Geol Soc Am Bull 122:1660–1670

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Derry LA, McKenzie NR, Jiang G, Webb AAG, Banerjee DM, Paulsen TS, Singh BP (2015) Neogene marine isotopic evolution and the erosion of Lesser Himalayan strata: implications for Cenozoic tectonic history. Earth Planet Sci Lett 417:142–150

    Article  Google Scholar 

  • Myrow PM, Fike AD, Malmskog B, Leslie S, Zhang T, Singh BP, Chaubey RS, Prasad SK, (2018) Ordovician–Silurian boundary strata of the Indian Himalaya: record of the latest Ordovician Boda Event. Geol Soc Am Bull. https://doi.org/10.1130/b31860.1

  • Nábĕlek J, Hetenyi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B-S and the HI-CLIMB Team (2009) Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325:1371‒1374

    Google Scholar 

  • Najman Y (2006) The sediment record of orogenesis: a review of approaches and techniques used in the Himalaya. Earth-Sci Rev 74:1–72

    Google Scholar 

  • Najman Y, Garzanti E (2000) Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geol Soc Am Bull 112:435–449

    Article  Google Scholar 

  • Najman Y, Clift P, Johnson MRW, Robertson AHF (1993) Early stages of foreland basin evolution in the Lesser Himalaya. In: Treloar PJ, Searle MP (eds) Himalayan tectonics, vol 74. Geol Soc London Spec Publ, pp 525–540

    Google Scholar 

  • Najman YMR, Enkin RJ, Johnson MRW, Robertson AHF, Baker J (1994) Paleomagnetic dating of the earliest continental Himalayan foredeep sediments: implications for Himalayan evolution. Earth Planet Sci Lett 128:713–718

    Article  Google Scholar 

  • Najman YMR, Pringle MS, Johnson MRW, Robertson AHF, Wijbrans JR (1997) Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland basin sediments in India: implications for early Himalayan evolution. Geology 25:535–538

    Article  Google Scholar 

  • Najman Y, Bickle M, Chapman H (2000) Early Himalayan exhumation; isotopic constraints from the Indian foreland basin. Terra Nova 12:28–34

    Article  Google Scholar 

  • Najman Y, Johnson K, White NM, Olivers G (2004) Evolution of Himalayan foreland basin, NW India. Basin Res 16:1–24

    Article  Google Scholar 

  • Nakata T (1989) Active faults of Himalaya, India and Nepal. Geol Soc Am Spec pap 232:243–264

    Google Scholar 

  • Nakazawa K, Kapoor HM, Ishi K, Bando Y, Okimura Y, Tokuoka T (1975) The Upper Permian and the Lower Triassic in Kashmir, India. Mem Fac Sci Kyoto Univ Series Geol Mineral 42(1):1–106

    Google Scholar 

  • Nautiyal SP, Jangpangi BS, Singh P, Guha Sarkar TK, Bhate VD, Raghavan MR, Sahai TN (1964) A preliminary note on the geology of Bhutan Himalaya. Rep 22nd Int Geol Cong New Delhi 11:1–14

    Google Scholar 

  • Nelson KD, Zhao W, Brown LD, Indepth Team (1996) Partially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science 274:1684‒1688

    Google Scholar 

  • Neogi S, Dasgupta S, Fukuoka M (1998) High P-T polymetamorphism, dehydration melting and generation of migmatites and granites in the Higher Himalayan Crystalline complex, Sikkim, India. J Petrol 39:61–99

    Article  Google Scholar 

  • Ni JF, Barazangi M (1984) Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya. J Geophys Res 89:947‒963

    Google Scholar 

  • Ojha PS (2012) Precambrian sedimentary basins of India: an appraisal of their petroleum potential. In: Bhat GM, Craig J, Thurow JW, Thusu B, Cozzi A (eds) Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia, vol 366. Geol Soc London Spec Publ, pp 19–58. https://doi.org/10.1144/SP366.11

  • Pandey S, Parcha SK (2018) Calcareous algae from the Ordovician succession (Thango Formation) of the Spiti Basin, Tethys Himalaya, India. Acta Palaeobotanica. https://doi.org/10.2478/acpa-2018-0009

  • Pandey B, Pathak DB (2016) The possibility of the Oceanic Anoxic Events (OAEs) study in the Indian marine Jurassic-Cretaceous outcrops. J Geol Soc India 87(3):261–267

    Article  Google Scholar 

  • Pandey B, Pathak DB (2017) Biostratigraphic implication of Olcostephanus Neumayr, (1875) (Ammonoidea) from the Lower Cretaceous Giumal Formation, Spiti Valley, Tethys Himalaya, India. Cret Res 70:244–251

    Google Scholar 

  • Pandey B, Pathak DB, Jaitly AK (2018a) A new ammonite gen. nov. from the Lower Valanginian (Lower Geticeras Cretaceous) of the Spiti Valley, Tethys Himalaya, India. Himalayan Geol 39(1):115–120

    Google Scholar 

  • Pandey B, Pathak DB, Mathur N, Jaitly AK, Singh AK, Singh PK (2018b) A Preliminary Evaluation on the Prospects of Hydrocarbon Potential in the Carbonaceous Shales of Spiti and Chikkim Formations, Tethys Himalaya, India. J Geol Soc India 92(4):427–434

    Article  Google Scholar 

  • Pant NC, Kundu A, Kumar R, Dorka BS, Prasher S (2006) Paleoproterozoic metamorphism in the Jeori-Wangtu Gneissic Crystallines (JWGC), Western Himalaya. J Asian Earth Sci 26:585–604

    Article  Google Scholar 

  • Pant NC, Singh P, Jain AK (2020) A Re-look at the Himalayan metamorphism. Episodes 43(1):369–380. https://doi.org/10.18814/epiiugs/2020/020023

  • Parcha SK (1996) Cambrian sequences in the Tethyan zone of Spiti Himalaya and its boundary problems. Newslett Strat 34:3–11

    Article  Google Scholar 

  • Parcha SK, Pandey S (2016) Trace fossils and microbially induced sedimentary structures from the early Cambrian successions of the Chandratal area, Spiti Basin, Tethys Himalaya. J Paleont Soc India 61(1):9–18

    Google Scholar 

  • Parkash B, Sharma RP, Roy AK (1980) The Siwalik Group (molasse) sediments shed by collision of continental plates. Sedim Geol 25:127–159

    Article  Google Scholar 

  • Parkash B, Kumar S, Rao MS, Giri SC, Kumar CS, Gupta S, Srivastava P (2000) Holocene tectonic movements and stress field in the western Gangetic Plain. Curr Sci 79:438–449

    Google Scholar 

  • Parkash B, Rathore RS, Pati P, Jakhmola RP, Singh S (2011) Convergence rates along the Himalayan Frontal Thrust inferred from terraces at Chandidevi Temple Hill, Hardwar, Northwestern Himalaya. Curr Sci 100(9):1426–1432

    Google Scholar 

  • Parrish RR, Hodges KV (1996) Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol Soc Am Bull 108:904–911. https://doi.org/10.1130/0016-7606(1996)108b0904:ICOTAAN2.3.CO;2

    Article  Google Scholar 

  • Pascoe EH (1959) A manual of the geology of India and Burma, 2nd edn. Gov India, pp 1–448

    Google Scholar 

  • Patel RC, Carter A (2009) Exhumation history of the Higher Himalayan Crystalline along Dhauliganga-Goriganga river valleys, NW India: new constraints from fission-track analysis. Tectonics 28:TC3004. https://doi.org/10.1029/2008tc002373

  • Patel RC, ManMohan (2020a) Exhumation history of the Lesser Himalaya, NW-India. Proc Indian Sci Acad 86(2)

    Google Scholar 

  • Patel RC, ManMohan (2020b) Mio-Pliocene Tectonics and Exhumation Histories of the NW- and NE-Himalaya. Episodes 43(1):381–403. https://doi.org/10.18814/epiiugs/2020/020023

  • Patel RC, Singh S, Asokan A, Manickavasagam RM, Jain AK (1993) Extensional tectonics in the collisional Zanskar Himalayan belt. In: Treloar PJ, Searle MP (eds) Himalayan tectonics, vol 74. Spec Publ Geol Soc London, pp 445–459

    Google Scholar 

  • Patel RC, Adlakha V, Lal N, Singh P, Kumar Y (2009) Spatiotemporal variation in exhumation of the Crystallines in the NW-Himalaya, India: constraints from Fission Track dating analysis. Tectonophysics 504(1–4):1–13

    Google Scholar 

  • Pathak DB (2007) Jurassic/Cretaceous boundary in the Spiti Himalaya, India. J Palaeont Soc India 52(1):51–57

    Google Scholar 

  • Pathak M, Kumar S (2019) Petrology, geochemistry and zircon U-Pb-Lu-Hf isotopes of Paleoproterozoic granite gneiss from Bomdila in the western Arunachal Himalaya, Northeast India. Geol Soc Lond Spec Publ. https://doi.org/10.1144/sp481-2017-169

  • Pati P, Parkash B, Awasthi AK, Acharya V (2011) Holocene tectono-geomorphic evolution of parts of the Upper and Middle Gangetic Plain, India. Geomorph 128:148–170

    Article  Google Scholar 

  • Pati P, Parkash B, Awasthi AK, Jakhmol RP (2012) Spatial and temporal distribution of inland fans/terminal fans between the Ghaghara and Kosi rivers indicate eastward shift of neotectonic activities along the Himalayan front. A study from parts of the upper and middle Gangetic Plain, India. Earth-Sci Rev 115:201–216

    Article  Google Scholar 

  • Pati P, Pradhan RM, Dash C, Parkash B, Awasthi AK (2015) Terminal fans and the Ganga plain tectonism: a study of neotectonism and segmentation episodes of the Indo-Gangetic foreland basin, India. Earth-Sci Rev 148:134–149

    Article  Google Scholar 

  • Pati P, Verma AK, Dash C, Patel NK, Gupta A, Sharma V, Jakhmola RP, Parkash B, Awasthi AK, Saraf AK (2019) Influence of neotectonism on geomorphology and depositional architecture of the Gandak megafan, middle Ganga plain, India. Geomorph 327:489–503

    Article  Google Scholar 

  • Patriat P, Achache J (1984) India-Euraisa collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–621

    Article  Google Scholar 

  • Pebam J, Jain AK, Kumar R, Singh S, Lal N (2008) Tectonics v. erosion: evidences from apatite fission track and Rb–Sr (biotite and muscovite) thermochronology, Arunachal Himalaya. Himal J Sci 5:103–105

    Google Scholar 

  • Philip G, Suresh NP, Jayangondaperumal R (2017) Late Pleistocene-Holocene strain release by normal faulting along the Main Boundary Thrust at Logar in the northwestern Kumaon Sub Himalaya, India. Quatern Int 462:50–64

    Article  Google Scholar 

  • Phukon P, Sen K, Srivastava HB, Singhal S, Sen A (2018) U–Pb geochronology and geochemistry from the Kumaon Himalaya, NW India, reveal Paleoproterozoic arc magmatism related to formation of the Columbia supercontinent. Geol Soc Am Bull. https://doi.org/10.1130/B31866.1

  • Pilgrim GE, West W (1928) The structure and correlation of the Simla rocks. Mem Geol Surv India 53:1–140

    Google Scholar 

  • Pognante U, Spencer DA (1991) First report of eclogites from the Himalayan belt, Kaghan valley (Pakistan). Eur J Miner 3:613–618

    Article  Google Scholar 

  • Powell C McA, Conaghan PJ (1973) Plate tectonics and the Himalayas. Earth Planet Sci Lett 20(1):1–12. https://doi.org/10.1016/0012-821X(73)90134-9

  • Powell C McA, Conaghan PJ (1975) Tectonic models of the Tibetan plateau. Geology 3:727‒731. https://doi.org/10.1130/0091-7613

  • Powers PM, Lillie RJ, Yeats RS (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India. Geol Soc Amer Bull 110(8):1010–1027. https://doi.org/10.1130/0016-7606

  • Prabhakar N, Bhattacharya A, Sathyanarayanan M, Mukherjee PK (2014) Structural, Petrological, and Chronological Constraints from Eastern India and Implications for the ∼1.0 Ga Assembly of Greater India. J Geol 122:411–432

    Google Scholar 

  • Prakash D, Tewari S (2016) Garnet-staurolite-mica schist from RangliRangliot, Eastern Himalaya: constraints from phase equilibria and Thermobarometry. J Geol Soc India 87:679–690

    Article  Google Scholar 

  • Prakash D, Tewari S, Singh PC (2017) Prograde Barrovian metamorphism along Darjeeling-Tista transect, Eastern Himalaya, India: constraints from textural relationship, phase equilibria and geothermobarometry. Geol J 53:243–281

    Article  Google Scholar 

  • Rahaman W, Singh SK, Sinha R, Tandon SK (2009) Climate control on erosion distribution over the Himalaya during the past ~100 ka. Geology 37(6):559–562. https://doi.org/10.1130/g25425a.1

  • Rai V, Singh IB (1983) Discovery of trilobite impression in the arenaceous member of Tal Formation. J Palaeont Soc India 28:114–117

    Google Scholar 

  • Raiverman V (2002) Foreland sedimentation in Himalayan tectonic regime. Bishan Singh Mohendar Pal Singh Dehradun, pp 1–378

    Google Scholar 

  • Raiverman V, Kunte SV, Mukherjee A (1983) Basin geometry, Cenozoic sedimentation and hydrocarbon prospects in northwestern Himalaya and Indo-Gangetic plains. Petrol Asia J 6:67–92

    Google Scholar 

  • Raiverman V, Srivastava AK, Prasad DN (1994) Structural style in northwestern Himalayan foothills. Himalayan Geol 15:263–280

    Google Scholar 

  • Rao MBR (1973) The subsurface geology of Indo-Gangetic Plains. J Geol Soc India 14:217–242

    Google Scholar 

  • Rao DR, Sharma R (2011) Arc magmatism in eastern Kumaun Himalaya, India: a study based on geochemistry of granitoid rocks. Island Arc 20:500–519

    Article  Google Scholar 

  • Rashid SA, Ganai JA (2018) Depositional environments, provenance and paleoclimatic implications of Ordovician siliciclastic rocks of the Thango Formation, Spiti Valley, Tethys Himalaya, northern India. J Asian Earth Sci 157:371–386

    Article  Google Scholar 

  • Ray SK (1995) Lateral variations in geometry of thrust planes and its significance, as studies in the Shumar allochthon, Lesser Himalayas, eastern Bhutan. Tectonophysics 249:125–139

    Article  Google Scholar 

  • Ray SK, Bandopadhyay BK, Razdan RK (1989) Tectonics of a part of the Shumar allochthon in eastern Bhutan. Tectonophysics 169:51–58

    Article  Google Scholar 

  • Reed FRC (1910) The Cambrian fossils of Spiti. Paleont Indica 15:1–70

    Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796

    Article  Google Scholar 

  • Richards A, Parrish R, Harris N, Argles T, Zhang L (2006) Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34:341–344

    Article  Google Scholar 

  • Robert X, van der Beek P, Braun J, Perry C, Dubille M, Mugnier J-L (2009) Assessing Quaternary reactivation of the Main Central thrust zone (central Nepal Himalaya): new thermochronologic data and numerical modelling. Geology 37(8):731–734. https://doi.org/10.1130/G25736A.1

  • Robinson, D.M., DeCelles, P.G., Patchett, P.J., and Garzione, C.N., 2001, The kinematic history of the Nepalese Himalaya interpreted from Nd isotopes: Earth Sci Lett 192, p. 507–521. https://doi.org/10.1016/S0012-821X(01)00451-4

  • Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models. Geol Soc Amer Bull 118:865–885. https://doi.org/10.1130/B25911.1

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Rolland Y, Pêcher A, Picard C (2000) Middle Cretaceous back-arc formation and arc evolution along the Asian margin: the Shyok Suture Zone in northern Ladakh NW Himalaya. Tectonophysics 325:145–173

    Google Scholar 

  • Rolland Y, Picard C, Pêcher A, Lapierre H, Bosch D, Keller F (2002) The cretaceous Ladakh arc of NW Himalaya—slab melting and melt–mantle interaction during fast northward drift of Indian Plate. Chem Geol 182:139–178

    Google Scholar 

  • Sachan HK, Kohn MJ, Saxena A, Corrie SL (2010) The Malari leucogranite, Garhwal Himalaya, northern India: Chemistry, age, and tectonic implications. Geol Soc Amer Bull 122:1865–1876. https://doi.org/10.1130/B30153.1

  • Sakai H, Iwano H, Danhara T, Takigami Y, Rai SM, Upreti BN, Hirata T (2013) Rift related origin of the Paleoproterozoic Kuncha Formation, and cooling history of the Kunchanappe and Taplejung granites, eastern Nepal Lesser Himalaya: a multichronological approach. Island Arc 22:338–360. https://doi.org/10.1111/iar.12021

    Article  Google Scholar 

  • Salvi D, Mathew G, Kohn B (2017) Rapid exhumation of the upper Siang Valley, Arunachal Himalaya since the Pliocene. Geomorphology 284:238–249. https://doi.org/10.1016/j.geomorph.2016.09.032

    Article  Google Scholar 

  • Sangode SJ, Kumar R, Ghosh SK (1996) Magnetic polarity stratigraphy of the Siwalik sequence of Haripur (H.P.), NW Himalaya. J Geol Soc India 47:683–704

    Google Scholar 

  • Sangode SJ, Kumar R, Ghosh SK (1999) Palaeomagnetic and rock magnetic perspectives on the post–collision continental sediments of the Himalaya, India. In: Radhakrishna T, Piper JDA (eds) The Indian subcontinent and Gondwana: a palaeomagnetic and rock magnetic perspective, vol 44. Mem Geol Soc India, pp 221–248

    Google Scholar 

  • Sangode SJ, Kumar R, Siddaiah NS (2005) Magnetic polarity and rock magnetic studies across marine to continental transition (Subathu–Dagshai sequence) in the Himalayan foreland. Asia Oceania Geosci Soc 2nd Ann Meet SE30/3A–01–3/206

    Google Scholar 

  • Sastri VV, Bhandari LL, Raju ATR, Datta AK (1971) Tectonics framework and subsurface stratigraphy of the Ganga basin. J Geol Soc India 12(3):222–233

    Google Scholar 

  • Saxena MN (1971) The crystalline axis of the Himalaya, Indian shield and continental drift. Tectonophysics 12:433–447

    Article  Google Scholar 

  • Schlup M, Carter A, Cosca M, Steck A (2003) Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission track ages: the Indus river-Tso Morari transect, NW Himalaya. J Geol Soc Lond 160:385–399

    Article  Google Scholar 

  • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S, Bilham R, Wu F (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435:1222–1225

    Google Scholar 

  • Searle MP (2013) Colliding continents: a geological exploration of the Himalaya, Karakoram, and Tibet. Oxford Univ Press, Oxford, pp 1–464

    Google Scholar 

  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Tingdong L, Xuchang X, Jan MQ, Thakur VC, Kumar S (1987) The closing of the Tethys and the tectonics of the Himalaya. Geol Soc Amer Bull 98:678–701

    Google Scholar 

  • Searle MP, Crawford MB, Rex AJ (1992) Field relations, geochemistry, origin and emplacement of the Baltoro granite, central Karakoram. Trans Royal Soc Edin 83: 519–538

    Google Scholar 

  • Searle MP, Parrish RR, Hodges KV, Hurford A, Ayres MW, Whitehouse MJ (1997) Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin and emplacement. J Geol 105:295–317

    Google Scholar 

  • Searle MP, Noble SR, Hurford AJ, Rex DC (1999) Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya. Geol Mag 136 (5):513–525

    Google Scholar 

  • Searle MP, Law RD, Godin L, Larson KP, Streule MJ, Cottle JM, Jessup MJ (2008) Defining the Himalayan Main Central Thrust in Nepal. J Geol Soc London 165:523–534

    Google Scholar 

  • Searle MP, Avouac J-P, Elliott J, Dyck B (2017) Ductile shearing to brittle thrusting along the Nepal Himalaya: Linking Miocene channel flow and critical wedge tectonics to 25th April 2015 Gorkha earthquake. Tectonophysics 714–715:117–124

    Google Scholar 

  • Seeber L, Armbruster JG (1981) Great Detachment Earthquakes Along the Himalayan Arc and Long-Term Forecasting. Earthquake Prediction:259–277 https://doi.org/10.1029/me004p0259

  • Sen Gupta S, Raina PL (1978) Geology of parts of Bhutan foothills adjacent of Darjeeling district. Indian J Earth Sci 5(1):20–33

    Google Scholar 

  • Sen K, Chaudhury R, Pfänder J (2015) 40Ar–39Ar age constraint on deformation and brittle–ductile transition of the Main Central Thrust and the South Tibetan Detachment zone from Dhauliganga valley, Garhwal Himalaya, India. J Geody 88:1–13. https://doi.org/10.1016/j.jog.2015.04.004

  • Shah and Sinha (1974) Stratigraphy and tectonics of the Tethys zone in a part of western Kumaun Himalaya. Himalayan Geol 4:1–27

    Google Scholar 

  • Shankar R, Kumar G, Mathur VK, Joshi A (1993) Stratigraphy of Blaini, Infra Krol, Krol and Tal succession, Krol belt, Lesser Himalaya, India. Indian J Petrol Geol 2:99–136

    Google Scholar 

  • Shanker R, Mathur VK (1992) Precambrian-Cambrian sequence in Krol belt and additional Ediacaran fossils. Geophyt 22:27–39

    Google Scholar 

  • Shanker R, Mathur VK, Kumar G, Srivastava MC (1997) Additional Ediacaran biota from the Krol Group, Lesser Himalaya, India and their significance. Geosci J 17:79–94

    Google Scholar 

  • Sharma VP (1977) The stratigraphy and structure of parts of the Simla Himalaya. Mem Geol Surv India 106:1–488

    Google Scholar 

  • Sharma R, Villa IM, Kumar S (eds) (2019) Crustal architecture and evolution of the Himalaya–Karakoram–Tibet Orogen. Geol Soc Lond Spec Publ 481

    Google Scholar 

  • Shreshtha M, Jain AK, Singh S (2015) Shear sense analysis of the Higher Himalayan Crystalline (HHC) belt, and tectonics of the South Tibetan Detachment System (STDS), Alaknanda–Dhauli Ganga Valley, Uttarakhand Himalaya. Curr Sci 108(6):1107–1118

    Google Scholar 

  • Siddaiah NS, Kumar K (2007) Discovery of volcanic ash bed from the basal Subathu Formation (Late Palaeocene–Middle Eocene) near Kalka, Solan District (Himachal Pradesh), Northwest Sub-Himalaya, India. Curr Sci 92(1):118–125

    Google Scholar 

  • Singh IB (1976) Geological Evolution of Ganga Plain - An Overview. J Palaent Soc India 41:99‒137

    Google Scholar 

  • Singh IB (1978) On some sedimentological and palaeoecological aspects of the Subathu–Dagshai–Kasauli succession of Simla Hill. J Palaeont Soc India 21:19–28

    Google Scholar 

  • Singh IB (1979) Some thoughts on evolution of Himalaya and northern limits of Indian Shield. Geol Rundsch 68:342–350

    Google Scholar 

  • Singh IB (1980) Sedimentological evolution of the Krol Belt sediments. Himalayan Geol 8:657–683

    Google Scholar 

  • Singh IB (1992) Geolgical evolution of Gangetic Plain: Present Status. In: Singh IB (ed) Gangetic Plain. Terra Incognita 1–14

    Google Scholar 

  • Singh IB (1996a) Late Quaternary sedimentation of Ganga plain foreland basin. Proc Symp NW Himalaya and foredeep. Geol Surv India Spec Publ 21:161–172

    Google Scholar 

  • Singh IB (1996b) Geological evolution of Ganga Plain—an overview. J Palaeont Soc India 41:99–137

    Google Scholar 

  • Singh IB (1999) Tectonic control on sedimentation in Ganga Plain Foreland Basin: constraints on the Siwalik sedimentation models. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya. Gondwana Res Group Mem 6:3‒37

    Google Scholar 

  • Singh IB (2001) Proxy records of neotectonics, climate changes and anthropogenic activity in the Late Quaternary of Ganga Plain. Proc Nat Symp of Role of Earth Sciences in Integrated Developments and Related Societal Issues. Geol Surv India Spec Publ 65(1):xxxiii–1

    Google Scholar 

  • Singh IB, Merajuddin (1978) Some sedimentological observations of the Chhaosa Formation (Simla Slates) in the Simla Hills. Himalayan Geol 8(2):683–702

    Google Scholar 

  • Singh IB, Rai V (1977) On the occurrence of stromatolites in the Krol Formation of Nainital area and its implications on the age of Krol Formation. Curr Sci 46:736–738

    Google Scholar 

  • Singh IB, Rai V (1983) Fauna and biogenic structures in Krol-Tal succession, Lesser Himalaya: their biostratigraphic and paleontological significance. J Paleont Soc India 28:67–94

    Google Scholar 

  • Singh IB, Ansari AA, Chandel RS, Misra A (1996) Neotectonic control on Drainage System in Gangetic Plain, Uttar Pradesh. J Geol Soc India 47:599–609

    Google Scholar 

  • Singh IB, Rajagopalan G, Agarwal KK, Srivastava P, Sharma M, Sharma S (1997) Evidence of Middle to Late Holocene neotectonic activity in the Ganga Plain. Curr Sci 73(12):1114–1117

    Google Scholar 

  • Singh BP (2003) Evidence of growth fault and forebulge in the Late Paleocene (~57.9–54.7 Ma), western Himalayan foreland basin, India. Earth Planet Sci Lett 216:717–724

    Google Scholar 

  • Singh BP, Virmani N, Bhargava ON, Kishore N, Gill A (2014) Yuehsienszella (Cambrian Series 2) trilobite from the Parahio Valley, Spiti region (Zanskar–Spiti Sub–basin), India and its biostratigraphic significance. J Palaeont Soc India 59:81–88

    Google Scholar 

  • Singh BP, Virmani N, Bhargava ON, Negi RS, Gill A, Kishore N (2016) Trilobite fauna of basal Cambrian Series 3 (Stage 5) from the Parahio Valley (Spiti), Northwest Himalaya, India and its biostratigraphic significance. Annales Paleont 102:59–67

    Google Scholar 

  • Singh BP, Chaubey RS, Bhargava ON, Prasad SK, Negi RS (2017a) The Cambrian trilobite fauna from the Shian (Saybang) section, Pin Valley (Spiti) and its biostratigraphic significance. Palaeoworld 26:25–36

    Google Scholar 

  • Singh BP, Bhargava ON, Negi RS, Zhao Y, Yin L, Sharma CA (2017b) Additional trilobite fauna from the basal part of the Cambrian Series 3, Stage 5, Kunzam La (=Parahio) Formation, Parahio Valley, Spiti (Northwest Himalaya), India and its biostratigraphic significance. Annales Paleont 103:271–281

    Google Scholar 

  • Singh BP, Bhargava ON, Sharma CA, Chaubey RS, Prasad SK, Negi RS, Kishore N (2017c) Treptichnus ichnogenus from the Cambrian of India and Bhutan: its relevance to the Precambrian-Cambrian boundary. J Paleont Soc India 62(1):39–51

    Google Scholar 

  • Singh BP, Bhargava ON, Mikuláš R, Prasad SK, Singla G, Kaur R (2017d) Asteriacites and other trace fossils from the Po Formation (Visean–Serpukhovian), Ganmachidam Hill, Spiti Valley (Himalaya) and its paleoenvironmental significance. Geol Carapathica 68(5):464–478

    Google Scholar 

  • Singh BP, Bhargava ON, Mikuláš R, Morrision S, Kaur R, Singla G, Kishore N, Kumar N, Kumar R, Moudgil S (2019) Integrated sedimentological, ichnological and sequence stratigraphical studies of the Koti Dhaman Formation (Tal Group), Nigali Dhar Syncline, Lesser Himalaya, India paleoenvironmental, paleoecological, paleogeographic significance. Ichnos. https://doi.org/10.1080/10420940.2019.1584560

  • Singh S (1993) Collision tectonics: metamorphic and geochronological constraints from parts of Himachal Pradesh, NW–Himalaya. Unpubl Ph.D. thesis, Univ Roorkee 289

    Google Scholar 

  • Singh S (2005) A review of U-Pb ages from Himalayan Collisional Belt. J Himalayan Geol. 26(1):61–76

    Google Scholar 

  • Singh S (2019) Protracted zircon growth in migmatites and In situ melt of Higher Himalayan Crystallines: U-Pb ages from Bhagirathi valley, NW Himalaya, India. Geosci Front 10:793–809. https://doi.org/10.1016/j.gsf.2017.12.014

  • Singh S (2020) Himalayan Magmatism through space and time. Episodes 43(1):358–368, doi.org/10.18814/epiiugs/2020/020021

    Google Scholar 

  • Singh S, Jain AK (2007) Geology and tectonics of the Subansiri Corridor, Arunachal Himalaya. DCS–DST News Lett 17:21–24

    Google Scholar 

  • Singh S, Jain AK (2008) Pan African Mandi Granite in the Lesser Himalaya: its field relationship and SHRIMP U-Pb zircon dating. In: Pan African Event: India and Antarctica. Geol Surv India Spec Publ 91:70–78

    Google Scholar 

  • Singh P, Saikia A, Pant NC, Verma PK (2013) Insights into the P-T evolution path of Tso Morari eclogites of the north-western Himalaya: constraints on the geodynamic evolution of the region. J Earth Sys Sci 122(3):677–698

    Google Scholar 

  • Singh RL, Singh KN (1971) Upper Ganga Plain. In: Singh RL (ed) India—a regional geography. Nat Geog Soc India Varanasi 922

    Google Scholar 

  • Singh S, Barley ME, Brown SJ, Jain AK, Manickavasagam RM (2002) SHRIMP U–Pb in zircon geochronology of the Chor granitoid: Evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India Precamb Res 118:285–292. https://doi.org/10.1016/S0301-9268(02)00107-9

  • Singh S, Jain AK, Barley ME (2009) SHRIMP U–Pb c (1860) Ma anorogenic magmatic signatures from the NW Himalaya: implications for Palaeoproterozoic assembly of the Columbia Supercontinent. In: Reddy SM, Mazumdar R, Evans DAD, Collins AS (eds) Palaeoproterozoic supercontinents and global evolution, vol 323. Geol Soc London Spec Publ, pp 283–300

    Google Scholar 

  • Sinha RN (1970) Heavy mineral investigation of the Siwaliks of Mohand, Dist. Saharanpur, U.P. J Geol Soc India 11:163–177

    Google Scholar 

  • Sinha AK (1989) Geology of higher central Himalaya. Wiley, Chichester, pp 1–236

    Google Scholar 

  • Sinha S, Sinha R (2016) Geomorphic evolution of Dehra Dun, NW Himalaya: tectonics and climatic coupling. Geomorph 266:20–32

    Article  Google Scholar 

  • Sinha HN, Verniers J (2016) Discovery of the chitinozoans Belonechitina capitata from the Shiala Formation of northeastern Garhwal-Kumaon Tethys Himalaya, Pithoragarh District, Uttrakhand, India. Geosci Front 7:859–864

    Article  Google Scholar 

  • Sorcar N, Hoppe U, Dasgupta S, Chakraborty S (2014) High-temperature cooling histories of migmatites from the high Himalayan crystallines in Sikkim, India: rapid cooling unrelated to exhumation? Contrib Mineral Petrol 167:1–34

    Article  Google Scholar 

  • Sorkhabi RB, Stump E, Foland K, Jain AK (1999) Tectonics and cooling history of the Garhwal Higher Himalaya (Bhagirathi Valley): constraints from thermochronological data. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya, vol 6. Gondwana Res Group Mem, pp 217–235

    Google Scholar 

  • Spencer CJ, Harris RA, Dorais (2012) The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics 31:TC1007. https://doi.org/10.1029/2010tc002853

  • Srikantia SV (1977) Sedimentary cycles in the Himalaya and their significance on the orogenic evolution of the mountain belt. Coll Int Centre Nat Recher Scient 268:395–408

    Google Scholar 

  • Srikantia SV (1981) The lithostratigraphy, sedimentation and structure of Proterozoic–Phanerozoic formations of Spiti in the higher Himalaya of Himachal Pradesh, India. In: Sinha AK (eds) Contemporary geoscientific researches in Himalaya. Bishen Singh Mahendra PS Publ Dehradun, pp 31–48

    Google Scholar 

  • Srikantia SV, Bhargava ON (1978) The Indus tectonic belts of Ladakh Himalaya: its geology, significance and evolution. In: Saklani PS (ed) Tectonic geology of the Himalaya. Today Tomorrow’s Printers Publ, pp 43–62

    Google Scholar 

  • Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh. Mem Geol Soc India, pp 1–406

    Google Scholar 

  • Srikantia SV, Bhargava ON (2018) Stratigraphic nomenclature of early Palaeozoics in the Spiti Himalaya: cobwebs cleared. J Palaeont Soc India 63(2):233–241

    Google Scholar 

  • Srikantia SV, Ganesan TM, Sinha PK, Tirkey B (1976) Geology of Part of Zanskar Mountains, Ladakh Himalaya with special reference to late Caledonian “Kurgiakh Orogeny”. “Geology, Mineral Resources and Natural Resources of Power Development of Himalayas with particular Reference to Kashmir”. Geol Sur India, Kashmir Circle Abstracts, pp 1–3

    Google Scholar 

  • Srikantia SV, Ganesan TM, Rao PN, Sinha PN, Tirkey B (1980) Geology of Zanskar area, Ladakh Himalaya. Himalayan Geol 8 Geology of Zanskar area, Ladakh Himalaya. Himalayan Geol 8 (for 1978):1009–1033

    Google Scholar 

  • Srivastava DC, John G (1999) Deformation in the Himalayan Frontal Fault zone: evidence from small-scale structures in Mohand-Khara area, NW Himalaya. In: Jain AK, Mancikvasagam RM (eds) Geodynamics of the NW Himalaya. Gondwana Res Group Mem 6:273–284

    Google Scholar 

  • Srivastava P, Parkash B, Sehgal J, Kumar S (1994) Role of neotectonics and climate in development of the Holocene geomorphology and soils of the Gangetic Plains between the Ramganga and Rapti rivers. Sediment Geol 94:129−151

    Google Scholar 

  • Srivastava P, Singh IB, Sharma M, Singhvi AK (2003) Luminescence chronometry and Late Quaternary geomorphic history of the Ganga Plain, India. In: Gupta AK, Anderson DM, Malmgren BA (eds) Indian Ocean Monsoons: Land and Sea Record, vol 197. Palaeogeo Palaeoclim, Palaeoeco, pp 15–41. https://doi.org/10.1016/s0031-0182(03)00384-5

  • Srivastava P, Sinha R, Deep V, Singh A, Upreti N (2018) Micromorphology and Sequence Stratigraphy of the Interfluve Paleosols from the Ganga Plains: a Record of Alluvial Cyclicity and Paleoclimate During the Late Quaternary. J Sediment Res 88:105–128

    Google Scholar 

  • Srivastava VK, Casshyap SM (1983) Evolution of the Pre-Siwalik Tertiary basin of Himachal Himalaya. J Geol Soc India 24:134–147

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1):17–33. https://doi.org/10.1016/S0012-821X(01)0058-X

  • Stoliczka F (1865) Geological section across the Himalayan mountain range from Wangtu Bridge on the river Sutlej to Sungdeo with an account of formations in Spiti accompanied by a revision of all known fossils from that district. Mem Geol Surv India 5:1–153

    Google Scholar 

  • Stübner K, Grujic D, Parrish RR, Roberts NMW, Kronz A, Wooden J, Ahmad T (2014) Monazite geochronology unravels the timing of crustal thickening in NW Himalaya. Lithos 210–211:111–128. https://doi.org/10.1016/j.lithos.2014.09.024

    Article  Google Scholar 

  • Stübner K, Grujic D, Dunkl I, Thiede R, Eugster P (2018) Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya. Earth Planet Sci Lett 481:273–283

    Article  Google Scholar 

  • Suess E (1893–1909) Das Antlitz der Erde, 4 vols. Prague and Leipzig

    Google Scholar 

  • Swami NK, Ernst A, Tripathi SC, Barman P, Bharti SK, Rana YP (2019) A new cryptostome bryozoan Ptilotrypa from the Upper Ordovician Yong Limestone Formation: tethyan sequence of Kumaun Higher Himalaya, India. J Paleont. https://doi.org/10.1017/jpa.2018.94

  • Tandon SK (1991) The Himalayan Foreland: focus on Siwalik Basin. In: Tandon SK, Pant CC, Casshyap SM (eds) Sedimentary Basins of India: tectonic context. Gyanodaya Prakashan, Nainital, pp 177–201

    Google Scholar 

  • Tandon SK, Sinha R, Gibling MR, Dasgupta AS, Ghazanfari P (2008) Late quaternary evolution of the Ganga Plains: myths and misconceptions, recent developments and future directions. Mem Geol Soc India 66:1–41

    Google Scholar 

  • Tangri SK (1995) Baxa Group. In: Bhargava ON (ed) Bhutan Himalaya: a geological account, vol 39. Geol Surv India Spec Publ, pp 38–58

    Google Scholar 

  • Tangri SK, Pande AC (1995) Tethyan sequence. In: Bhargava ON (ed) Bhutan Himalaya: a geological account, vol 39. Geol Surv India Spec Publ, pp 109–142

    Google Scholar 

  • Tewari VC (1994) Sedimentology of the rocks of Deoban Basin, Dhuraphat area, Saryu valley, Eastern Kumaon Lesser Himalaya. Geosci J 15(2):117–161

    Google Scholar 

  • Tewari S, Prakash D (2016) Geothermobarometry and Barrovian Metamorphism of Darjeeling–Mangpu Region, Eastern Himalaya. In: Raju NJ (ed) Geostatistical and geospatial approaches for the characterization of natural resources in the environment. Springer, Berlin, pp 523–526

    Google Scholar 

  • Tewari S, Prakash D (2017) Age of crustal melting in Higher Himalayan Crystalline Sequence (Darjeeling, Eastern Himalaya): constraints from SHRIMP U-Pb geochronology. Geol J 53:1516–1525. https://doi.org/10.1002/gj.2970

    Article  Google Scholar 

  • Thakur VC (1993) Geology of the Western Himalaya. Pergmon Press, Oxford, pp 1–355

    Google Scholar 

  • Thakur VC (2013) Active tectonics of Himalayan Frontal Fault system. Int J Earth Sci 102 (7):1791–1810

    Google Scholar 

  • Thakur VC, Pandey AK, Suresh N (2007) Late Quaternary–Holocene frontal fault zone of the Garhwal Sub Himalaya, NW India. J Asian Earth Sci 29(2/3):305–319

    Article  Google Scholar 

  • Thakur VC, Jayangondaperumal R, Malik MA (2010) Redefining Wadia–Medlicott’s Main Boundary Fault from Jhelum to Yamuna: an active fault strand of the Main Boundary Thrust in Northwest Himalaya. Tectonophysics 489:29–42

    Article  Google Scholar 

  • Thakur SS, Patel SC, Singh AK (2015) A P-T pseudosection modelling approach to understand metamorphic evolution of the Main Central Thrust Zone in the Alaknanda valley, NW Himalaya. Contrib Mineral Petrol 170:2. https://doi.org/10.1007/s00410-015-1159-y

    Article  Google Scholar 

  • Thakur VC, Joshi M, Jayangondaperumal R (2020) Active tectonics of Himalayan frontal fault zone in the Sub Himalaya. In: Tandon SK, Gupta N (eds) Geodynamics of the Indian Plate: evolutionary perspectives. Springer Geology, Berlin

    Google Scholar 

  • Thiede RC, Ehlers TA (2013) Large spatial and temporal variations in Himalayan denudation. Earth Planet Sci Lett 371–372:278–293

    Article  Google Scholar 

  • Thiede RC, Arrowsmith JR, Bookhagen B, Mcwilliams MO, Sobel ER, Strecker MR (2005) From tectonically to erosionally controlled development of the Himalayan orogen. Geology 33:689–692. https://doi.org/10.1130/G21483AR.1

  • Thiede RC, Ehlers TA, Bookhagen B, Strecker MR (2009) Erosional variability along the northwest Himalaya. J Geophys Res 114:F01015. https://doi.org/10.1029/2008JF001010

  • Thiede R, Robert X, Stübner K, Dey S, Faruhn J (2017) Sustained out-of-sequence shortening along a tectonically active segment of the Main Boundary thrust: the Dhauladhar Range in the northwestern Himalaya. Lithosphere. https://doi.org/10.1130/L630.1

  • Thomas JV, Parkash B, Mohindra R (2002) Lithofacies and paleosol analysis of the Middle and Upper Siwalik Groups (Plio–Pleistocene), Haripur-Kolar section, Himachal Pradesh, India. Sedim Geol 150:343–366

    Article  Google Scholar 

  • Treloar PJ, Searle MP (eds) (1993) Himalayan tectonics. Geol Soc Lond Spec Publ 74:630

    Google Scholar 

  • Treloar PJ, Searle MP (eds) (2019) Himalayan tectonics: a modern synthesis. Geol Soc Lond Spec Publ 483

    Google Scholar 

  • Trichal AK, Jayaram S (1989) Tungsten mineralization in skarn rocks, Dholpani-Bhurkhola areas, Geylegphug district, Bhutan. Geol Surv India Spec Publ 22:101–105

    Google Scholar 

  • Trivedi JR, Gopalan K, Valdiya KS (1984) Rb–Sr ages of granitic rocks within the Lesser Himalayan Nappes, Kumaon, India. J Geol Soc India 25:641–654

    Google Scholar 

  • Valdiya KS (1962) An outline of the stratigraphy and structure of the southern part of the Pithoragarh District, U.P. J Geol Soc India 3:27–48

    Google Scholar 

  • Valdiya KS (1970) Simla Slates, the Precambrian flysch of Lesser Himalaya; its turbidites, sedimentary structures and palaeocurrents. Geol Soc Am Bull 81:451–468

    Article  Google Scholar 

  • Valdiya KS (1980a) Geology of the Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehra Dun India, pp 1–291

    Google Scholar 

  • Valdiya KS (1980b) The two intracrustal boundary thrusts of the Himalaya. Tectonophysics 66:323–348

    Article  Google Scholar 

  • Valdiya KS (1992) The Main Boundary thrust zone of the Himalaya, India. In: Bucknam RC, Hancock PL (eds) Major active faults of the world: results of IGCP Project 206. Annales Tectonicae 6:54–84

    Google Scholar 

  • Valdiya KS (2016) The making of India geodynamic evolution, 2nd edn. Springer, Berlin, pp 1–924

    Google Scholar 

  • Valdiya KS, Gupta VJ (1972) A contribution to the geology of Northeastern Kumaun, with special reference to the Hercynian gap in Tethys Himalaya. Himalayan Geol 2:1–34

    Google Scholar 

  • Valdiya KS, Gupta VJ, Powar KB, Banerjee DM (1972) Palaeozoic Biostratigraphy of the Tethys Himalaya in the North-Eastern Kumaun Himalaya. Nature 235:152–154

    Google Scholar 

  • Valdiya KS, Paul SK, Tarachandra, Bhakuni SS, Upadhyay RC (1999) Tectonic and Iithological characterization of Himadri (Great Himalaya) between Kali and Yamuna rivers, Central Himalaya. Himalayan Geol 10(2):1–17

    Google Scholar 

  • Vannay JC, Grasemann B, Rahn M, Frank W, Carter A, Baudraz V, Cosca M (2004) Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23:1–24

    Article  Google Scholar 

  • Verma PK (1989) The Himalayan Metamorphism. Geol Soc Spec Publ 43:377–383

    Article  Google Scholar 

  • Verma PK (2003) The Himalayan metamorphism and Generation of Melt. In: Proceedings of 90th Indian Sci Congr Part-II President Address, 34

    Google Scholar 

  • Wadia DN (1928) Geology of the Punch state (Kashmir) and adjacent portions of the Northern Punjab. Mem Geol Surv India 51:253

    Google Scholar 

  • Wadia DN (1931) The syntaxis of the northwest Himalaya and its rocks, tectonics and orogeny. Rec Geol Surv India 65:189–220

    Google Scholar 

  • Wadia DN (1937) Permo Carboniferous limestone inliers in the Sub Himalayan Tertiary zone of Jammu, Kashmir Himalaya. Rec Geol Surv India 72:162–173

    Google Scholar 

  • Wallis D, Phillips RJ, Lloyd GE (2014) Evolution of the Eastern Karakoram Metamorphic Complex, Ladakh, NW India, and its relationship to magmatism and regional tectonics. Tectonophysics 626:41–52. https://doi.org/10.1016/j.tecto.2014.03.023

  • Wang JM, Rubatto D, Jhang JJ (2015) Timing of partial melting and cooling across the Greater Himalayan Crystalline Comlex (Nyalam, Central Himalaya): in-sequence thrusting and its imlications. J Petrol 56:1677–1702

    Article  Google Scholar 

  • Warren CJ, Singh AK, Roberts NM, Regis D, Halton AM, Singh RB (2014) Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India. Lithos 200–201:94–110

    Article  Google Scholar 

  • Webb AAG, Yin A, Harrison TM, Celerier J, Burgess P (2007) The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: Implications for the evolution of the Himalayan orogen. Geology 35:955–958. https://doi.org/10.1130/G23931A.1

  • Webb AAG, Yin A, Harrison TM, Celerier J, Gehrels GE, Manning CE, Grove M (2011) Cenozoic tectonic history of the Himachal Himalaya (NW India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere 7:1013–1061

    Article  Google Scholar 

  • Webb AAG, Yin A, Dubey CS (2013) U-Pb zircon geochronology of major lithologic units in the eastern Himalaya: Implications for the origin and assembly of Himalayan rocks. Geol Soc Am Bull 125:499–522. https://doi.org/10.1130/B30626.1

    Article  Google Scholar 

  • Webb AAG, Guo H, Clift PD, Husson L, Müller T, Costantino D, Yin A, Xu Z, Cao H, Wang Q (2017) The Himalaya in 3D: slab dynamics controlled mountain building and monsoon intensification. Lithosphere 9(4):637–651. ISSN 1941–8264. https://doi.org/10.1130/L636.1

  • Wesnousky GW, Kumar S, Mohindra R, Thakur VC (1999) Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics 18(6):967–976

    Google Scholar 

  • White NM, Parrish RR, Bickle M, Najman YMR, Burbank D, Maithani A (2001) Metamorphism and exhumation of the NW Himalaya constrained by U-Th–Pb analyses of detrital monazite grains from early foreland basin sediments. J Geol Soc Lond 158:625–635

    Article  Google Scholar 

  • White NM, Pringle M, Garzanti E, Bickle M, Najman Y, Chapman H, Friend P (2002) Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet Sci Lett 195:29–44

    Article  Google Scholar 

  • Winslow DM, Zeitler PK, Chamberlain CP, Williams IS (1996) Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan. Tectonics 15:1292–1308

    Article  Google Scholar 

  • Wobus C, Heimsath A, Whipple K, Hodges KV (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434(7036):1008–1011. https://doi.org/10.1038/nature03499

    Article  Google Scholar 

  • Yeats RS, Kausar AB, Nakata T, Nakata T (2006) Conference examine deadly (2005) Kashmir earthquake. EOS 87:115

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev 76:1–31

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Sci 28:211–280

    Google Scholar 

  • Yin A, Dubey CS, Kelty TK, Gehrels GE, Chou CY, Grove M, Lovera O (2006) Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Curr Sci 90:195–206

    Google Scholar 

  • Yin A, Dubey CS, Kelty TK, Webb AAG, Harrison TM, Chou CY, Célérier J (2009) Geologic correlation of the Himalayan orogen and Indian craton: part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. Geol Soc Am Bull 122:360–395. https://doi.org/10.1130/B26461.1

  • Yin Lei-Ming, Singh Birendra P, Bhargava ON, Zhao YL, Negi RS, Meng FW, Sharma CA (2018) Palynomorphs from the Cambrian Series 3, Parahio valley (Spiti), Northwest Himalaya. Palaeoworld 27:30–41. https://doi.org/10.1016/j.palwor.2017.05.004

  • Zhang YZ, Replumaz A, Wang GC, Leloup PH, Gautheron C, Bernet M, van der Beek P, Paquette JL, Wang A, Zhang KX, Chevalier ML (2015) Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet. Tectonics 34:1219–1243

    Google Scholar 

  • Zhao G, Wang Y, Huang B, Dong Y, Li S, Zhang G, Yu S (2018) Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangaea. Earth-Sci Rev HYPERLINK https://www.sciencedirect.com/science/journal/00128252/186/supp/C 186: 262–286, https://doi.org/10.1016/j.earscirev.2018.10.003

  • Zhao GC, Sun M, Wilde SA, Li SZ (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123

    Google Scholar 

  • Zhao W, Nelson KD, Che J, Quo J, Lu D, Wu C, Liu X. (1993) Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 366:557–559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A.K., Banerjee, D.M., Kale, V.S. (2020). Tectonics of the Himalaya. In: Tectonics of the Indian Subcontinent. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-42845-7_6

Download citation

Publish with us

Policies and ethics