Skip to main content

Wave Vector Excitation

  • Chapter
  • First Online:
Book cover Nanophotonic Chemical Reactions

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 218 Accesses

Abstract

Si is widely used in most of the electric devices; therefore, our world cannot be without Si. To improve the performance of Si devices using electron only as carriers, it is required to reduce the size of the device below 10 nm. In addition to the electrons, it is expected to improve further by introducing the photons [1]. However, Si is not good material for photonic device because Si has low efficiency to excite the carrier by the photo-excitation of propagating FF. This is due to its indirect bandgap, in which Si has different wave vector between the \(\Gamma \) point and the X point [2, 3] (refer to Fig. 2.8a). Therefore, phonon assistance is required to compensate for the wave vector difference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Paniccia, Silicon photonics is this the future? in Nature Photonics Conference (2007)

    Google Scholar 

  2. H. Lu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7(11), 3249–3252 (2007)

    Article  ADS  Google Scholar 

  3. J. Noffsinger, E. Kioupakis, C.G. Van de Walle, S.G. Louie, M.L. Cohen, Phonon-assisted optical absorption in silicon from first principles. Phys. Rev. Lett. 108, 167402 (2012)

    Article  ADS  Google Scholar 

  4. D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86(6), 063106 (2005)

    Article  ADS  Google Scholar 

  5. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  6. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11(6), 2219–2224 (2011)

    Article  ADS  Google Scholar 

  7. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010)

    Article  ADS  Google Scholar 

  8. T. Yatsui, M. Yamaguchi, K. Nobusada, Nano-scale chemical reactions based on non-uniform optical near-fields and their applications. Prog. Quantum Electron. 55, 166–194 (2017)

    Article  Google Scholar 

  9. J. Jung, M.L. Trolle, K. Pedersen, T.G. Pedersen, Indirect near-field absorption mediated by localized surface plasmons. Phys. Rev. B 84, 165447 (2011)

    Article  ADS  Google Scholar 

  10. M. Yamaguchi, K. Nobusada, Indirect interband transition induced by optical near fields with large wave numbers. Phys. Rev. B 93, 195111 (2016)

    Article  ADS  Google Scholar 

  11. T. Yatsui, S. Okada, T. Takemori, T.S.K. Saichi, T. Ogamoto, S. Chiashi, S. Maruyama, M. Noda, K. Yabana, K. Iida, K. Nobusada, Enhanced photo-sensitivity in a Si photodetector using a near-field assisted excitation. Commun. Phys. 2, 62 (2019)

    Article  Google Scholar 

  12. T. Yatsui, Recent improvement of silicon absorption in opto-electric devices. Opto-Electron. Adv. 2(10), 190023 (2019)

    Article  Google Scholar 

  13. J.C. Irvin, Resistivity of bulk silicon and of diffused layers in silicon. Bell Syst. Tech. J. 41(2), 387–410 (1962)

    Article  Google Scholar 

  14. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103(40), 8410–8426 (1999)

    Article  Google Scholar 

  15. V. Myroshnychenko, J. Rodriguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J.G. de Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)

    Google Scholar 

  16. L. Rayleigh F.R.S., XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Lond. Edinb. Dublin Philos. Mag. J. Sci. 47(287), 375–384 (1899)

    Google Scholar 

  17. A.T. Young, Rayleigh scattering. Phys. Today 35(1), 42–48 (1982)

    Article  ADS  Google Scholar 

  18. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005)

    Google Scholar 

  19. M.M. Wind, J. Vlieger, D. Bedeaux, The polarizability of a truncated sphere on a substrate I. Phys. A: Stat. Mech. Appl. 141(1), 33–57 (1987)

    Article  Google Scholar 

  20. K. Nakayama, K. Tanabe, H.A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93(12), 121904 (2008)

    Article  ADS  Google Scholar 

  21. K.R. Catchpole, A. Polman, Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93(19), 191113 (2008)

    Article  ADS  Google Scholar 

  22. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105 (2007)

    Article  ADS  Google Scholar 

  23. H.R. Stuart, D.G. Hall, Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl. Phys. Lett. 69(16), 2327–2329 (1996)

    Article  ADS  Google Scholar 

  24. J.I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971)

    Google Scholar 

  25. J.J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 27(7), 777–784 (1956)

    Article  ADS  Google Scholar 

  26. J. Wagner, J.A. del Alamo, Band-gap narrowing in heavily doped silicon: a comparison of optical and electrical data. J. Appl. Phys. 63(2), 425–429 (1988)

    Article  ADS  Google Scholar 

  27. S. Richard, F. Aniel, G. Fishman, Energy-band structure of Ge, Si, and GaAs: a thirty-band \(\mathbf{k}\mathbf{\cdot }\mathbf{p}\) method. Phys. Rev. B 70, 235204 (2004)

    Google Scholar 

  28. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Google Scholar 

  29. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962)

    Google Scholar 

  30. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yatsui .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yatsui, T. (2020). Wave Vector Excitation. In: Nanophotonic Chemical Reactions. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-030-42843-3_5

Download citation

Publish with us

Policies and ethics