Skip to main content

Weighted N-grams CNN for Text Classification

  • Conference paper
  • First Online:
Information Retrieval Technology (AIRS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12004))

Included in the following conference series:

  • 531 Accesses

Abstract

Text categorization can solve the problem of information clutter to a large extent, and it also provides a more efficient search strategy and more effective search results for information retrieval. In recent years, Convolutional Neural Networks have been widely applied to this task. However, most existing CNN models are difficult to extract longer n-grams features for the reason as follow: the parameters of the standard CNN model will increase with the increase of the length of n-grams features because it extracts n-grams features through convolution filters of fixed window size. Meanwhile, the term weighting schemes assigning reasonable weight values to words have exhibited excellent performance in traditional bag-of-words models. Intuitively, considering the weight value of each word in n-grams features may be beneficial in text classification. In this paper, we proposed a model called weighted n-grams CNN model. It is a variant of CNN introducing a weighted n-grams layer. The parameters of the weighted n-grams layer are initialized by term weighting schemes. Only by adding fixed parameters can the model generate any length of weighted n-grams features. We compare our proposed model with other popular and latest CNN models on five datasets in text classification. The experimental results show that our proposed model exhibits comparable or even superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cs.cornell.edu/people/pabo/movie-review-data/.

  2. 2.

    http://www.cs.cornell.edu/home/llee/data/search-subj.html.

  3. 3.

    http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html.

  4. 4.

    http://nlp.stanford.edu/sentiment/.

  5. 5.

    http://www.cs.pitt.edu/mpqa.

References

  1. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011). http://dl.acm.org/citation.cfm?id=2078186

    MATH  Google Scholar 

  2. Conneau, A., Schwenk, H., Barrault, L., LeCun, Y.: Very deep convolutional networks for natural language processing. CoRR abs/1606.01781 (2016). http://arxiv.org/abs/1606.01781

  3. Del Corso, G.M., Gulli, A., Romani, F.: Ranking a stream of news. In: Proceedings of the 14th International Conference on World Wide Web, pp. 97–106. ACM (2005)

    Google Scholar 

  4. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 60(5), 493–502 (2004). https://doi.org/10.1108/00220410410560573

    Article  Google Scholar 

  5. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

  6. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  7. Lan, M., Tan, C.L., Su, J., Lu, Y.: Supervised and traditional term weighting methods for automatic text categorization. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 721–735 (2009). https://doi.org/10.1109/TPAMI.2008.110

    Article  Google Scholar 

  8. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  9. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014, pp. 1188–1196 (2014). http://jmlr.org/proceedings/papers/v32/le14.html

  10. Li, B., Zhao, Z., Liu, T., Wang, P., Du, X.: Weighted neural bag-of-n-grams model: new baselines for text classification. In: 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, COLING 2016, Osaka, Japan, 11–16 December 2016, pp. 1591–1600 (2016). http://aclweb.org/anthology/C/C16/C16-1150.pdf

  11. Li, S., Zhao, Z., Liu, T., Hu, R., Du, X.: Initializing convolutional filters with semantic features for text classification. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 September 2017, pp. 1884–1889 (2017). https://aclanthology.info/papers/D17-1201/d17-1201

  12. Martineau, J., Finin, T.: Delta TFIDF: an improved feature space for sentiment analysis. In: Proceedings of the Third International Conference on Weblogs and Social Media, ICWSM 2009, San Jose, California, USA, 17–20 May 2009 (2009). http://aaai.org/ocs/index.php/ICWSM/09/paper/view/187

  13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held at Lake Tahoe, Nevada, USA, 5–8 December 2013, pp. 3111–3119 (2013). http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

  14. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124. Association for Computational Linguistics (2005)

    Google Scholar 

  15. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002, Philadelphia, PA, USA, 6–7 July 2002 (2002). https://aclanthology.info/papers/W02-1011/w02-1011

  16. Shen, D., et al.: Baseline needs more love: on simple word-embedding-based models and associated pooling mechanisms. arXiv preprint arXiv:1805.09843 (2018)

  17. Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, 28 June–2 July 2011, pp. 129–136 (2011)

    Google Scholar 

  18. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)

    Google Scholar 

  19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 3104–3112 (2014). http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

  20. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, Beijing, China, 26–31 July 2015, Long Papers, vol. 1, pp. 1556–1566 (2015). http://aclweb.org/anthology/P/P15/P15-1150.pdf

  21. Wang, G., et al.: Joint embedding of words and labels for text classification (2018)

    Google Scholar 

  22. Wang, J., Wang, Z., Zhang, D., Yan, J.: Combining knowledge with deep convolutional neural networks for short text classification. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 2915–2921 (2017). https://doi.org/10.24963/ijcai.2017/406

  23. Wang, S., Huang, M., Deng, Z.: Densely connected CNN with multi-scale feature attention for text classification. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 4468–4474 (2018). https://doi.org/10.24963/ijcai.2018/621

  24. Wang, S.I., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: The 50th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Jeju Island, Korea, 8–14 July 2012, Short Papers, vol. 2, pp. 90–94 (2012). http://www.aclweb.org/anthology/P12-2018

  25. Wang, T., Cai, Y., Leung, H., Cai, Z., Min, H.: Entropy-based term weighting schemes for text categorization in VSM. In: 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, 9–11 November 2015, pp. 325–332 (2015). https://doi.org/10.1109/ICTAI.2015.57

  26. Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39(2–3), 165–210 (2005)

    Article  Google Scholar 

  27. Xiang, Z., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification (2015)

    Google Scholar 

  28. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  29. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820 (2015)

  30. Ren, H., Zeng, Z.Q., Cai, Y., Du, Q., Li, Q., Xie, H.: A weighted word embedding model for text classification. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 419–434. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_25

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, SCUT (No. 2017ZD048, D2182480), the Science and Technology Planning Project of Guangdong Province (No. 2017B050506004), the Science and Technology Programs of Guangzhou (No. 201704030076, 201707010223, 201802010027, 201902010046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, Z., Cai, Y., Wang, F.L., Xie, H., Chen, J. (2020). Weighted N-grams CNN for Text Classification. In: Wang, F., et al. Information Retrieval Technology. AIRS 2019. Lecture Notes in Computer Science(), vol 12004. Springer, Cham. https://doi.org/10.1007/978-3-030-42835-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42835-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42834-1

  • Online ISBN: 978-3-030-42835-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics