Skip to main content

Solid-State Pharmaceuticals: Solving Complex Problems in Preformulation and Formulation

  • Chapter
  • First Online:
Pharmaco-complexity

Part of the book series: AAPS Introductions in the Pharmaceutical Sciences ((AAPSINSTR))

  • 244 Accesses

Abstract

Pharmaceutical systems and products almost always include solid-state ingredients either during manufacture or as the dosage form itself. Thus preformulation and formulation of drug products is often critically dependent on the characterization and understanding of these physicochemical properties. Despite their seemingly simplicity, attributes like dissolution, particle shape, and powder flow can be exceedingly complex and often require nonlinear approaches for modeling, prediction, and analysis. This section provides examples both from static and dynamic processes encountered in pharmaceutical preformulation/formulation development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, A. M., Douglas Boudinot, F., Barr, W. H., Reed, R. C., & Garnett, W. R. (2005). The use of Monte Carlo simulations to study the effect of poor compliance on the steady state concentrations of valproic acid following administration of enteric-coated and extended release divalproex sodium formulations. Biopharmaceutics & Drug Disposition, 26(9), 417–425.

    Article  CAS  Google Scholar 

  • Akbarieh, M., Dubuc, B., & Tawashi, R. (1987). Surface studies of calcium oxalate dihydrate single crystals during dissolution in the presence of urine. Scanning Microscopy, 1(3), 1397–1403.

    CAS  PubMed  Google Scholar 

  • Akbarieh, M., & Tawashi, R. (1989). Surface studies of calcium oxalate dihydrate single crystals during dissolution in the presence of stone-formers’ urine. Scanning Microscopy, 3(1), 139–145. discussion 145–136.

    CAS  PubMed  Google Scholar 

  • Amidon, G. L., Lennernas, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12(3), 413–420.

    Article  CAS  PubMed  Google Scholar 

  • Anonymous. Retrieved August 22, 2010., from http://commons.wikimedia.org/wiki/File:Lorenz_system_r28_s10_b2-6666.png.

  • Aoshima, M., & Satoh, A. (2005). Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field. Journal of Colloid and Interface Science, 288(2), 475–488.

    Article  CAS  PubMed  Google Scholar 

  • Avnir, D., Carberry, J. J., Citri, O., Farin, D., Gratzel, M., & AJ, M. E. (1991). Fractal analysis of size effects and surface morphology effects in catalysis and electrocatalysis. Chaos, 1(4), 397–410.

    Article  PubMed  Google Scholar 

  • Avnir, D., & Farin, D. (1984). Molecular fractal surfaces. Nature, 308(5956), 261–263.

    Article  CAS  Google Scholar 

  • Barnsley, M. F., & Rising, H. (1993). Fractals everywhere. Boston, MA: Academic Press Professional.

    Google Scholar 

  • Braatz, R. D., & Hasebe, S. (2002). Particle size and shape control in crystallization processes. AIChE Symposium, Series: Proceedings of the 6th International Conference on Chemical, Process Control.

    Google Scholar 

  • Carr, J. F., & Walker, D. M. (1967). An annular shear cell for granular materials. Powder Technology, 68(1), 369–373.

    Google Scholar 

  • Carr, R. L. (1965). Evaluating flow properties of solids. Chemical Engineer, 72, 163–168.

    CAS  Google Scholar 

  • Carstensen, J. T., & Franchini, M. (1993). The use of fractal geometry in pharmaceutical systems. Drug Development and Industrial Pharmacy, 19(1–2), 85–100.

    Article  CAS  Google Scholar 

  • Castellanos, A., Valverde, J. M., & Quintanilla, M. A. (2002). Fine cohesive powders in rotating drums: Transition from rigid-plastic flow to gas-fluidized regime. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 65(6 Pt 1), 061301.

    Article  CAS  PubMed  Google Scholar 

  • Christofides, P. D. (2002). Model-Based Control of Particulate Processes (Vol. 14). Springer Science & Business Media., Dordrecht, Netherlands.

    Google Scholar 

  • Christov, I. C., Ottino, J. M., & Lueptow, R. M. (2010). Chaotic mixing via streamline jumping in quasi-two-dimensional tumbled granular flows. Chaos, 20(2), 023102.

    Article  PubMed  CAS  Google Scholar 

  • Concessio, N. M., & Hickey, A. J. (1997). Descriptors of irregular particle morphology and powder properties. Advanced Drug Delivery Reviews, 26(1), 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Concessio, N. M., VanOort, M. M., Knowles, M. R., & Hickey, A. J. (1999). Pharmaceutical dry powder aerosols: Correlation of powder properties with dose delivery and implications for pharmacodynamic effect. Pharmaceutical Research, 16(6), 828–834.

    Article  CAS  PubMed  Google Scholar 

  • Crowder, T., & Hickey, A. (2006). Powder specific active dispersion for generation of pharmaceutical aerosols. International Journal of Pharmaceutics, 327(1–2), 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Crowder, T., Hickey, A., Louey, M. D., & Orr, N. (2003). A guide to pharmaceutical particulate science. New York, NY: Informa Healthcare..

    Google Scholar 

  • D’Arcy, D. M., Corrigan, O. I., & Healy, A. M. (2005). Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: Impact on dissolution rate and variability. The Journal of Pharmacy and Pharmacology, 57(10), 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  • D’Arcy, D. M., Corrigan, O. I., & Healy, A. M. (2006). Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics–dissolution rate implications. European Journal of Pharmaceutical Sciences, 27(2–3), 259–267.

    Article  PubMed  CAS  Google Scholar 

  • Daw, C. S., Finney, C. E. A., Vasudevan, M., van Goor, N. A., Nguyen, K., Bruns, D. D., … Yorke, J. A. (1995). Self-organization and Chaos in a fluidized bed. Physical Review Letters, 75(12), 2308.

    Article  CAS  PubMed  Google Scholar 

  • Dokoumetzidis, A., Kosmidis, K., Argyrakis, P., & Macheras, P. (2005). Modeling and Monte Carlo simulations in oral drug absorption. Basic & Clinical Pharmacology & Toxicology, 96(3), 200–205.

    Article  CAS  Google Scholar 

  • Dokoumetzidis, A., & Macheras, P. (2006). A century of dissolution research: From Noyes and Whitney to the biopharmaceutics classification system. International Journal of Pharmaceutics, 321(1–2), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Dressman, J. B., Amidon, G. L., Reppas, C., & Shah, V. P. (1998). Dissolution testing as a prognostic tool for oral drug absorption: Immediate release dosage forms. Pharmaceutical Research, 15(1), 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Egermann, H., Krumphuber, A., & Frank, P. (1992). Novel approach to estimate quality of binary random powder mixtures: Samples of constant volume. III: Range of validity of equation. Journal of Pharmaceutical Sciences, 81(8), 773–776.

    Article  CAS  PubMed  Google Scholar 

  • Faqih, A., Chaudhuri, B., Alexander, A. W., Davies, C., Muzzio, F. J., & Silvina Tomassone, M. (2006). An experimental/computational approach for examining unconfined cohesive powder flow. International Journal of Pharmaceutics, 324(2), 116–127.

    Article  CAS  PubMed  Google Scholar 

  • Farin, D., & Avnir, D. (1992). Use of fractal geometry to determine effects of surface morphology on drug dissolution. Journal of Pharmaceutical Sciences, 81(1), 54–57.

    Article  CAS  PubMed  Google Scholar 

  • Fini, A., Fazio, G., Fernández-Hervás, M. J., Holgado, M. A., & Rabasco, A. M. (1996). Fractal analysis of sodium cholate particles. Journal of Pharmaceutical Sciences, 85(9), 971–975.

    Article  CAS  PubMed  Google Scholar 

  • Fini, A., Holgado, M. A., Rodriguez, L., & Cavallari, C. (2002). Ultrasound-compacted indomethacin/polyvinylpyrrolidone systems: Effect of compaction process on particle morphology and dissolution behavior. Journal of Pharmaceutical Sciences, 91(8), 1880–1890.

    Article  CAS  PubMed  Google Scholar 

  • Fuite, J., Marsh, R., & Tuszyński, J. (2002). Fractal pharmacokinetics of the drug mibefradil in the liver. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 66(2 Pt 1), 021904.

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara, M., Nagy, Z. K., Chew, J. W., & Braatz, R. D. (2005). First-principles and direct design approaches for the control of pharmaceutical crystallization. Journal of Process Control, 15(5), 493–504.

    Article  CAS  Google Scholar 

  • Gilchrist, J. F., & Ottino, J. M. (2003). Competition between chaos and order: Mixing and segregation in a spherical tumbler. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 68(6 Pt 1), 061303.

    Article  CAS  PubMed  Google Scholar 

  • Grebogi, C., Ott, E., & Yorke, J. A. (1988). Unstable periodic orbits and the dimensions of multifractal chaotic attractors. Physical Review A, 37(5), 1711.

    Article  CAS  Google Scholar 

  • Hausner, H. H. (1967). Friction conditions in a mass of metal powder. International Journal of Powder Metallurgy, 3, 7–13.

    Google Scholar 

  • Hickey, A., & Concessio, N. M. (1996). Chaos in rotating lactose beds. Particulate Science and Technology, 14(1), 15–25.

    Article  CAS  Google Scholar 

  • Higuchi, T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. Journal of Pharmaceutical Sciences, 50, 874–875.

    Article  CAS  PubMed  Google Scholar 

  • Hill, K. M., Khakhar, D. V., Gilchrist, J. F., McCarthy, J. J., & Ottino, J. M. (1999). Segregation-driven organization in chaotic granular flows. Proceedings of the National Academy of Sciences of the United States of America, 96(21), 11701–11706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holgado, M. A., Fernández‐Hervás, M. J., Rabasco, A. M., & Fini, A. (1995). Characterization study of a diclofenac salt by means of SEM and fractal analysis. International Journal of Pharmaceutics, 120(2), 157–167.

    Article  CAS  Google Scholar 

  • Jartti, T. T., Kuusela, T. A., Kaila, T. J., Tahvanainen, K. U., & Välimäki, I. A. (1998). The dose-response effects of terbutaline on the variability, approximate entropy and fractal dimension of heart rate and blood pressure. British Journal of Clinical Pharmacology, 45(3), 277–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johns, M. L., & Gladden, L. F. (2000). Probing ganglia dissolution and mobilization in a water-saturated porous medium using MRI. Journal of Colloid and Interface Science, 225(1), 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen, W. L., & Duffy, E. M. (2000). Prediction of drug solubility from Monte Carlo simulations. Bioorganic & Medicinal Chemistry Letters, 10(11), 1155–1158.

    Article  CAS  Google Scholar 

  • Karalis, V., & Macheras, P. (2002). Drug disposition viewed in terms of the fractal volume of distribution. Pharmaceutical Research, 19(5), 696–703.

    Article  CAS  PubMed  Google Scholar 

  • Kaye, B. H. (1978). Specification of the ruggedness and/or texture of a fine particle profile by its fractal dimension. Powder Technology, 21(1), 1–16.

    Article  Google Scholar 

  • Kaye, B. H. (1993). Chaos & complexity : Discovering the surprising patterns of science and technology. Weinheim, Germany, New York, NY: VCH.

    Google Scholar 

  • Kaye, B. H. (1994). A random walk through fractal dimensions. Weinheim, Germany/New York, NY: VCH.

    Book  Google Scholar 

  • Keller, T. H., Pichota, A., & Yin, Z. (2006). A practical view of ‘druggability’. Current Opinion in Chemical Biology, 10(4), 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Khakhar, D. V., McCarthy, J. J., Gilchrist, J. F., & Ottino, J. M. (1999). Chaotic mixing of granular materials in two-dimensional tumbling mixers. Chaos, 9(1), 195–205.

    Article  CAS  PubMed  Google Scholar 

  • Kosmidis, K., Argyrakis, P., & Macheras, P. (2003). A reappraisal of drug release laws using Monte Carlo simulations: The prevalence of the Weibull function. Pharmaceutical Research, 20(7), 988–995.

    Article  CAS  PubMed  Google Scholar 

  • Kosmidis, K., & Macheras, P. (2007). Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas. International Journal of Pharmaceutics, 343(1–2), 166–172.

    Article  CAS  PubMed  Google Scholar 

  • Kosmidis, K., & Macheras, P. (2008). Monte Carlo simulations of drug release from matrices with periodic layers of high and low diffusivity. International Journal of Pharmaceutics, 354(1–2), 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Kosmidis, K., Rinaki, E., Argyrakis, P., & Macheras, P. (2003). Analysis of Case II drug transport with radial and axial release from cylinders. International Journal of Pharmaceutics, 254(2), 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Kuu, W. Y., & Chilamkurti, R. (2003). Determination of in-process limits during parenteral solution manufacturing using Monte Carlo simulation. PDA Journal of Pharmaceutical Science and Technology, 57(4), 263–276.

    PubMed  Google Scholar 

  • Lee, Y. S., Poynter, R., Podczeck, F., & Newton, J. M. (2000). Development of a dual approach to assess powder flow from avalanching behavior. AAPS PharmSciTech, 1(3), E21.

    Article  CAS  PubMed  Google Scholar 

  • Leuenberger, H., Leu, R., & Bonny, J. D. (1992). Application of percolation theory and fractal geometry to tablet compaction. Drug Development and Industrial Pharmacy, 18(6–7), 723–766.

    Article  CAS  Google Scholar 

  • Li, B., & Siegel, R. A. (2000). Global analysis of a model pulsing drug delivery oscillator based on chemomechanical feedback with hysteresis. Chaos, 10(3), 682–690.

    Article  CAS  PubMed  Google Scholar 

  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. G., & Nie, Y. F. (2001). Fractal scaling of effective diffusion coefficient of solute in porous media. Journal of Environmental Sciences (China), 13(2), 170–172.

    CAS  Google Scholar 

  • Lüdde, K. H., & Kawakita, K. (1966). Die Pulverkompression. Pharmazie, 21, 393–403.

    Google Scholar 

  • Luerkens, D. W. (1991). Theory and application of morphological analysis : Fine particles and surfaces. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Macheras, P. (1996). A fractal approach to heterogeneous drug distribution: Calcium pharmacokinetics. Pharmaceutical Research, 13(5), 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Macheras, P., & Argyrakis, P. (1997). Gastrointestinal drug absorption: Is it time to consider heterogeneity as well as homogeneity? Pharmaceutical Research, 14(7), 842–847.

    Article  CAS  PubMed  Google Scholar 

  • Manai, G., Delogu, F., & Rustici, M. (2002). Onset of chaotic dynamics in a ball mill: Attractors merging and crisis induced intermittency. Chaos, 12(3), 601–609.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, R. E., & Riauka, T. A. (2007). Modeling fractal-like drug elimination kinetics using an interacting random-walk model. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 75(3 Pt 1), 031902.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, R. E., & Tuszynski, J. A. (2006). Fractal Michaelis-Menten kinetics under steady state conditions: Application to mibefradil. Pharmaceutical Research, 23(12), 2760–2767.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Landrove, M., Pereira, D., Caldeira, M. E., Itriago, S., & Juliac, M. (2007). Fractal analysis of tumoral lesions in brain. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 1306–1309.

    Google Scholar 

  • Mihranyan, A., & Stromme, M. (2007). Solubility of fractal nanoparticles. Surface Science, 601(2), 315–319.

    Article  CAS  Google Scholar 

  • Montgomery, M. J., Beringer, P. M., Aminimanizani, A., Louie, S. G., Shapiro, B. J., Jelliffe, R., & Gill, M. A. (2001). Population pharmacokinetics and use of Monte Carlo simulation to evaluate currently recommended dosing regimens of ciprofloxacin in adult patients with cystic fibrosis. Antimicrobial Agents and Chemotherapy, 45(12), 3468–3473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon, S. J., Swift, J. B., & Swinney, H. L. (2004). Role of friction in pattern formation in oscillated granular layers. Physical Review E, 69(3), 031301.

    Article  CAS  Google Scholar 

  • Muzzio, F. J., Goodridge, C. L., Alexander, A., Arratia, P., Yang, H., Sudah, O., & Mergen, G. (2003). Sampling and characterization of pharmaceutical powders and granular blends. International Journal of Pharmaceutics, 250(1), 51–64.

    Article  CAS  PubMed  Google Scholar 

  • Narambuena, C. F., Ausar, F. S., Bianco, I. D., Beltramo, D. M., & Leiva, E. P. (2005). Aggregation of casein micelles by interactions with chitosans: A study by Monte Carlo simulations. Journal of Agricultural and Food Chemistry, 53(2), 459–463.

    Article  CAS  PubMed  Google Scholar 

  • Ottino, J. M., & Khakhar, D. V. (2002). Open problems in active chaotic flows: Competition between chaos and order in granular materials. Chaos, 12(2), 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Pang, K. S., Weiss, M., & Macheras, P. (2007). Advanced pharmacokinetic models based on organ clearance, circulatory, and fractal concepts. The AAPS Journal, 9(2), E268–E283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadopoulou, V., Kosmidis, K., Vlachou, M., & Macheras, P. (2006). On the use of the Weibull function for the discernment of drug release mechanisms. International Journal of Pharmaceutics, 309(1–2), 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Peppas, N. A. (1985). Analysis of Fickian and non-Fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60(4), 110–111.

    CAS  PubMed  Google Scholar 

  • Pereira, L. M. (2010). Fractal pharmacokinetics. Computational and Mathematical Methods in Medicine, 11(2), 161–184.

    Article  PubMed  Google Scholar 

  • Persson, E. M., Gustafsson, A. S., Carlsson, A. S., Nilsson, R. G., Knutson, L., Forsell, P., … Abrahamsson, B. (2005). The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharmaceutical Research, 22(12), 2141–2151.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings, J. B., Miller, S. M., & Witkowski, W. R. (1993). Model identification and control of solution crystallization processes: A review. Industrial & Engineering Chemistry Research, 32(7), 1275–1296.

    Article  CAS  Google Scholar 

  • Roncaglia, R., Mannella, R., & Grigolini, P. (1994). Fractal properties of ion channels and diffusion. Mathematical Biosciences, 123(1), 77–101.

    Article  CAS  PubMed  Google Scholar 

  • Rowe, R. C., York, P., Colbourn, E. A., & Roskilly, S. J. (2005). The influence of pellet shape, size and distribution on capsule filling–a preliminary evaluation of three-dimensional computer simulation using a Monte-Carlo technique. International Journal of Pharmaceutics, 300(1–2), 32–37.

    Article  CAS  PubMed  Google Scholar 

  • Sanz, E., & Marenduzzo, D. (2010). Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids. The Journal of Chemical Physics, 132(19), 194102.

    Article  CAS  PubMed  Google Scholar 

  • Schroder, M., & Kleinebudde, P. (1995). Structure of disintegrating pellets with regard to fractal geometry. Pharmaceutical Research, 12(11), 1694–1700.

    Article  CAS  PubMed  Google Scholar 

  • Shah, K. R., Badawy, S. I., Szemraj, M. M., Gray, D. B., & Hussain, M. A. (2007). Assessment of segregation potential of powder blends. Pharmaceutical Development and Technology, 12(5), 457–462.

    Article  CAS  PubMed  Google Scholar 

  • Shinbrot, T., Alexander, A., Moakher, M., & Muzzio, F. J. (1999). Chaotic granular mixing. Chaos, 9(3), 611–620.

    Article  CAS  PubMed  Google Scholar 

  • Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48(2–3), 139–157.

    Article  CAS  PubMed  Google Scholar 

  • Siepmann, J., & Siepmann, F. (2013). Mathematical modeling of drug dissolution. International Journal of Pharmaceutics, 453(1), 12–24.

    Article  CAS  PubMed  Google Scholar 

  • Sjoberg, B., & Mortensen, K. (1997). Structure and thermodynamics of nonideal solutions of colloidal particles: Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation. Biophysical Chemistry, 65(1), 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Tromelin, A., Gnanou, J. C., Andrès, C., Pourcelot, Y., & Chaillot, B. (1996). Study of morphology of reactive dissolution interface using fractal geometry. Journal of Pharmaceutical Sciences, 85(9), 924–928.

    Article  CAS  PubMed  Google Scholar 

  • Tromelin, A., Hautbout, G., & Pourcelot, Y. (2001). Application of fractal geometry to dissolution kinetic study of a sweetener excipient. International Journal of Pharmaceutics, 224(1–2), 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Venables, H. J., & Wells, J. I. (2001). Powder mixing. Drug Development and Industrial Pharmacy, 27(7), 599–612.

    Article  CAS  PubMed  Google Scholar 

  • Walker, D. M. (1966). An approximate theory for pressures and arching in hoppers. Chemical Engineering Science, 21, 975–997.

    Article  CAS  Google Scholar 

  • Wang, T. Y., Sheng, Y. J., & Tsao, H. K. (2009). Donnan potential of dilute colloidal dispersions: Monte Carlo simulations. Journal of Colloid and Interface Science, 340(2), 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Warnken, Z., Smyth, H. D. C., & Williams, R. O. (2016). Route-specific challenges in the delivery of poorly water-soluble drugs. In R. O. Williams III et al. (Eds.), Formulating poorly water soluble drugs (AAPS advances in the pharmaceutical sciences series) (Vol. 22, pp. 1–39).

    Chapter  Google Scholar 

  • Weidler, P. G., Degovics, G., & Laggner, P. (1998). Surface roughness created by acidic dissolution of synthetic goethite monitored with SAXS and N2-adsorption isotherms. Journal of Colloid and Interface Science, 197(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Weisstein, E. W. (2010). “Fractal.” Retrieved August 18, 2010, from http://mathworld.wolfram.com/Fractal.html.

  • Xie, L., Wu, H., Shen, M., Augsburger, L. L., Lyon, R. C., Khan, M. A., … Hoag, S. W. (2008). Quality-by-design (QbD): Effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powder measured by the ASTM D 6940-04 segregation tester. Journal of Pharmaceutical Sciences, 97(10), 4485–4497.

    Article  CAS  PubMed  Google Scholar 

  • Zook, J. M., & Iftekharuddin, K. M. (2005). Statistical analysis of fractal-based brain tumor detection algorithms. Magnetic Resonance Imaging, 23(5), 671–678.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hickey, A.J., Smyth, H.D.C. (2020). Solid-State Pharmaceuticals: Solving Complex Problems in Preformulation and Formulation. In: Pharmaco-complexity. AAPS Introductions in the Pharmaceutical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-42783-2_3

Download citation

Publish with us

Policies and ethics