Skip to main content

Advanced Modeling and Simulation Tools to Address Build-Up Issues in Additive Manufacturing by Cold Spray

  • Chapter
  • First Online:
Cold Spray in the Realm of Additive Manufacturing

Abstract

The objective of the proposed chapter is to discuss recent advances in modeling and simulations for specific application to additive manufacturing by cold spray. To meet the requirements for overall modeling of the process, two scales have to be considered, i.e. that of the powder particle and that of the deposit. These result in two parts in the chapter respectively, i.e. Sections 2 and 3, which follow a rather elaborated introductory section. The latter gives the background and a rapid state-of-the-art in the field of cold spray for additive manufacturing. Experimental and numerical approaches to coating build-up are compared, in particular. The two-fold core of the chapter then highlights both conventional finite element analysis and original morphological modeling of the basic mechanisms involved in cold spray coating build-up. The role of the number of particles to be involved in the simulations is discussed since this number is the key parameter for shape prediction in additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadian, S., Browning, A., & Jordan, E. H. (2015). Three-dimensional X-ray micro-computed tomography of cracks in a furnace cycled air plasma sprayed thermal barrier coating. Scripta Materialia, 97, 3–16.

    Article  Google Scholar 

  2. Amsellem, O., Borit, F., Jeulin, D., Guipont, V., Jeandin, M., Boller, E., et al. (2012). Three-dimensional simulation of porosity in plasma-sprayed alumina using microtomography and electrochemical impedance spectrometry for finite element modeling of properties. Journal of Thermal Spray Technology, 21(2), 193–201.

    Google Scholar 

  3. Amsellem, O., Madi, K., Borit, F., Jeulin, D., Guipont, V., Jeandin, M., et al. (2008). Two-dimensional (2D) and three-dimensional (3D) analyses of plasma-sprayed alumina microstructures for finite-element simulation of Young’s modulus. Journal Materials Science, 43(12), 4091–4098.

    Google Scholar 

  4. Antoun, T., Seaman, L., Curran, D. R., Kanel, G. I., Razorenov, S. V., & Utkin, A. V. (2003). Spall fracture. New York, NY: Springer.

    Google Scholar 

  5. Armstrong, D. R., Borys, S. S., & Anderson, R. P. (1999). Method of making metals and other elements from the halid vapor of the metal. US Patent 5958106.

    Google Scholar 

  6. Armstrong, R., & Zerilli, F. (1994). Dislocation mechanics aspects of plastic instability and shear banding. Mechanics of Materials, 17(2–3), 319–327.

    Google Scholar 

  7. Assadi, H., Irkhin, I., Gutzmann, H., Gärtner, F., Schulze, M., Villa Vidaller, M., et al. (2015). Determination of plastic constitutive properties of microparticles through single particle compression. Advanced Powder Technology, 26(6), 1544–1554.

    Article  Google Scholar 

  8. Bae, G., Xiong, Y., Kumar, S., Kang, K., & Lee, C. (2008). General aspects of interface bonding in kinetic sprayed coatings. Acta Materialia, 56, 4858–4868.

    Article  Google Scholar 

  9. Barradas, S., Guipont, V., Molins, M., Jeandin, M., Arrigoni, M., Boustie, M., et al. (2007). Laser shock flier impact simulation of particle-substrate interactions in cold spray. Journal of Thermal Spray Technology, 16, 548.

    Article  Google Scholar 

  10. Beauvais, S., & Decaux, O. (2007). Plasma sprayed biocompatible coatings on PEEK implants. In: Proceedings of the International Thermal Spray Conference (ITSC ’07) (pp. 371–376), Beijing, China, May 14–16, 2007, ASM International.

    Google Scholar 

  11. Blochet, Q., Delloro, F., Borit, F., N’Guyen, F., Jeandin, M., Roche, K., & Surdon, G. (2014). Influence of spray angle on the cold spray of Al for the repair of aircraft components. In J. Jerzembeck et al. (Eds.), Proceedings of the International Thermal Spray Conference and Exposition (ITSC’14) (pp. 69–74), Barcelona, Spain, May 21–23, 2014. Düsseldorf: DVS Media GmbH. ISBN 978-3-87155-574-9.

    Google Scholar 

  12. Blochet, Q., Delloro, F., N’Guyen, F., Jeulin, D., Borit, F., & Jeandin, M. (2017). Effect of the cold-sprayed aluminum coating-substrate interface morphology on bond strength for aircraft repair application. Journal of Thermal Spray Technology, 26(4), 671–686.

    Google Scholar 

  13. Bobzin, K., Ote, M., Knoch, M. A., Alkhasli, I., & Dokhanchi, S. R. (2019). Modelling of particle impact using modified momentum source method in thermal spraying. IOP Conference Series: Materials Science and Engineering, 480, 012003.

    Google Scholar 

  14. Botef, I., & Villafuerte, J. (2015). Overview. In J. Villafuerte (Eds.), Modern cold spray. Cham: Springer.

    Google Scholar 

  15. Bunel, M., Borit, F., Delloro, F., Jeandin, M., Bacciochini, A., Lemeille, P., et al. (2017). Experimental and numerical study of the influence of powder characteristics in the cold spraying of Al-based alloys for additive manufacturing using low-pressure, medium-pressure and high pressure cold spray facilities. In: Proceedings of the International Thermal Spray Conference and Exposition (ITSC ’17) (pp. 714–718), Dusseldorf, Germany, 7–9 June 2017, ISBN: 978-1-5108-5822-0.

    Google Scholar 

  16. Cai, Z., Liang, H., Quan, S., Deng, S., Zeng, C., & Zhang, F. (2015). Computer-aided robot trajectory auto-generation strategy in thermal spraying. Journal of Thermal Spray Technology, 24(7), 1235–1245.

    Article  Google Scholar 

  17. Chen, Q., Alizadeh, A., Xie, W., Wang, X., Champagne, V., Gouldstone, A., et al. (2018). High-strain-rate material behavior and adiabatic material instability in impact of micron-scale Al-6061 particles. Journal of Thermal Spray Technology, 27, 641.

    Google Scholar 

  18. Chen, S. R., & Gray, G. T. (1996). Constitutive behaviour of tantalum and tantalum-tungsten alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 27(10), 2994–3006.

    Google Scholar 

  19. Cinca, N., Rebled, J. M., Estradé, S., Peiró, F., Fernández, J., & Guilemany, J. M. (2013). Influence of the particle morphology on the cold gas spray deposition behaviour of titanium on aluminum light alloys. Journal of Alloys and Compounds, 554, 89–96.

    Google Scholar 

  20. Cochelin, E., Borit, F., Frot, G., Jeandin, M., Decker, L., Jeulin, D., et al. (1999). Oxidation and particle deposition modeling in plasma spraying of Ti-6Al-4 V/SiC fiber composites. Journal of Thermal Spray Technology, 8, 117.

    Article  Google Scholar 

  21. Cormier, Y., Dupuis, P., Jodoin, B., & Ghaei, A. (2015). Finite element analysis and failure mode characterization of pyramidal fin arrays produced by masked cold gas dynamic spray. Journal of Thermal Spray Technology, 24, 1549–1565.

    Article  Google Scholar 

  22. Delloro, F., Jeandin, M., Jeulin, D., Proudhon, H., Faessel, M., Bianchi, L., et al. (2017). A morphological approach to the modeling of the cold spray process. Journal of Thermal Spray Technology, 26, 1838–1850.

    Google Scholar 

  23. Delloro, F., Jeandin, M., Faessel, M., Jeulin, D., Meillot, E., & Bianchi, L. (2014). A morphological approach to the modeling of the cold spray process. In J. Jerzembeck et al. (Eds.), Proceedings of the International Thermal Spray Conference and Exposition (ITSC ’14) (pp. 221–225), Barcelona, Spain, 21–23 May, 2014. Düsseldorf, Germany: DVS Media GmbH. ISBN 978-3-87155-574-9.

    Google Scholar 

  24. Descurninges, L. L., Mingault, L. T., Guipont, V., & Jeandin, M. (2011). Influence of powder particles oxidation on properties of cold sprayed tantalum. In J. Jerzembeck (Ed.), Thermal Spray 2011: Proceedings of the International Thermal Spray Conference (pp. 60–65), September 2011. DVS.

    Google Scholar 

  25. Dosta, S., Bolelli, G., Candeli, A., Lusvarghi, L., Cano, I. G., & Guilemany, J. M. (2017). Plastic deformation phenomena during cold spray impact of WC-Co particles onto metal substrates. Acta Materialia, 124, 173–181.

    Article  Google Scholar 

  26. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Hoboken, NJ: Ed. Wiley.

    Google Scholar 

  27. Fernandez, R., & Jodoin, B. (2018). Cold spray aluminum-alumina cermet coatings: Effect of alumina content. Journal of Thermal Spray Technology, 26, 1838–1850.

    Google Scholar 

  28. Gama, B. A., Lopatnikov, S. L., & Gillespie, J. W. (2004). Hopkinson bar experimental technique: A critical review. Applied Mechanics Reviews, 57(4), 223–250.

    Article  Google Scholar 

  29. Ghafouri-Azar, R., Mostaghimi, J., Chandra, S., & Charmchi, M. (2003). A stochastic model to simulate the formation of a thermal spray coating. Journal of Thermal Spray Technology, 12(1), 53–69.

    Article  Google Scholar 

  30. Ghelici, R., Bagherifard, S., Guagliano, M., & Verani, M. (2011). Numerical simulation of cold spray coating. Surface and Coatings Technology, 205, 5294–5301.

    Article  Google Scholar 

  31. Gillibert, L., Peyrega, C., Jeulin, D., Guipont, V., & Jeandin, M. (2012). 3D multiscale segmentation and morphological analysis of X-ray microtomography from cold-sprayed coatings. Journal of Microscopy, 248(2), 187–199.

    Article  Google Scholar 

  32. Grujicic, M., Saylor, J. R., Beasley, D. E., DeRosset, W. S., & Helfritch, D. (2003). Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Applied Surface Science, 219(3–4), 211–227.

    Article  Google Scholar 

  33. Hassani-Gangaraj, M., Veysset, D., Nelson, K. A., & Schuh, C. A. (2018). In-situ observations of single micro-particle impact bonding. Scripta Materialia, 145, 9–13.

    Google Scholar 

  34. Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., & Schuh, C. A. (2018). Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Materialia, 158(1), 430–439.

    Google Scholar 

  35. Ichikawa, Y., & Ogawa, K. (2015). Effect of substrate surface oxide film thickness on deposition behavior and deposition efficiency in the cold spray process. Journal of Thermal Spray Technology, 24(7), 1269–1276.

    Google Scholar 

  36. Ichikawa, Y., Tokoro, R., Tanno, M., & Ogawa, K. (2019). Elucidation of cold-spray deposition mechanism by auger electron spectroscopic evaluation of bonding interface oxide film. Acta Materialia, 164, 39–49.

    Google Scholar 

  37. Jeandin, M. (2011). A Socratic approach to surface modification: The example of thermal spray, Plenary talk. In E. Beyer, et al. (Eds.), Proceedings of the 24th International Conference on Surface Modification Technologies (SMT 24) (pp. 3–20), Dresden: Valardocs.

    Google Scholar 

  38. Jeandin, M. (2018). Cold spray under the banner of thermal spraying the whirlwind of additive manufacturing. Surface Engineering, 34(5), 341–343.

    Google Scholar 

  39. Jeandin, M., Koivuluoto, H., & Vezzu, S. (2015). Coating properties (Chap. 4). In J. Villafuerte (Ed.), Modern cold spray materials, process, and applications. Berlin: Springer.

    Google Scholar 

  40. Jeandin, M., Rolland, G., Descurninges, L. L., et al. (2014). Which powders for cold spray? Surface Engineering, 30, 291–298.

    Google Scholar 

  41. Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In Proceedings of the 7th International Symposium on Ballistics (pp. 541–547).

    Google Scholar 

  42. Johnson, G. R., & Holmquist, T. J. (1993). An improved computational constitutive model for brittle materials. In S. C. Schmidt, J. W. Shaner, G. A. Samara, & M. Ross (Eds.), High Pressure Science and Technology-1993, AIP Conference Proceedings (Vol. 309, pp. 981–984). New York, NY: AIP Press.

    Google Scholar 

  43. Jolliffe, I. T. (2001). Principal Component Analysis (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  44. Khan, A. S., & Liang, R. (1999). Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. International Journal of Plasticity, 15(10), 1089–1109.

    Google Scholar 

  45. Khan, A. S., & Liang, R. (2000). Behaviors of three BCC metals during non-proportional multi-axial loadings: Experiments and modeling. International Journal of Plasticity, 16(12), 1443–1458.

    Google Scholar 

  46. Knotek, O., & Elsing, R. (1987). Monte Carlo simulation of the lamellar structure of thermally sprayed coatings. Surface & Coatings Technology, 32(1–4), 261–271.

    Article  Google Scholar 

  47. Li, W., Liao, H., Li, C., Bang, H., & Coddet, C. (2007). Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Applied Surface Science, 253(11), 5084–5091.

    Google Scholar 

  48. Li, W. Y., & Gao, W. (2009). Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Applied Surface Science, 255, 7878–7892.

    Google Scholar 

  49. Li, W. Y., Yin, S., & Wang, X. F. (2010). Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Surface Science, 256(12), 3725–3734.

    Google Scholar 

  50. Lin, E., Chen, Q., Ozdemir, O. C., & Müftü, S. (2018). Effects of interface bonding on the residual stresses in cold sprayed Al-6061: A numerical simulation. In F. Azarmi, et al. (Eds.), Proceedings of the International Thermal Spray Conference (ITSC 2018) (pp. 278–295), May 7–10, 2018, Orlando, Florida, USA.

    Google Scholar 

  51. Liu, H., Lavernia, E. J., & Rangel, R. H. (1993). Numerical simulation of impingement of molten Ti, Ni, and W droplets on a flat substrate. Journal of Thermal Spray Technology, 2, 369–378.

    Article  Google Scholar 

  52. MacDonald, D., Fernández, R., Delloro, F., & Jodoin, B. (2017). Cold spraying of armstrong process titanium powder for additive manufacturing. Journal of Thermal Spray Technology, 26, 598.

    Article  Google Scholar 

  53. Manap, A., Okabe, T., & Ogawa, K. (2011). Relationship between particle size and deformation in the cold spray process. Applied Surface Science, 10, 1145–1150.

    Google Scholar 

  54. Manap, A., Ogawa, K., & Okabe, T. (2012). Numerical analysis of interfacial bonding of Al-Si particle and mild steel substrate by cold spray technique using the SPH method. Journal of Solid Mechanics and Materials Engineering, 6, 241–250.

    Google Scholar 

  55. Martin, M., & Vo, P. (2019). Advanced robot path planning for cold spray additive manufacturing. In Proceedings of the CASI AERO Conference 2019 (p. 174). Available via https://www.openconf.org/aero2019/modules/request.php?module=oc_proceedings&action=summary.php&id=174&a=Accept. Accessed June 2, 2019.

  56. Moridi, A., Gangaraj, S. M. H., Vezzu, S., & Guagliano, M. (2014). Number of passes and thickness effect on mechanical characteristics of cold spray coating. Procedia Engineering, 74, 449–459.

    Google Scholar 

  57. Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., et al. (2014). Cold spray coating: review of material systems and future perspectives. Surface Engineering, 30, 369–395.

    Google Scholar 

  58. Mukherjee, D., & Zohdi, T. I. (2015). A discrete element based simulation framework to investigate particulate spray deposition processes. Journal of Computational Physics, 290, 298–317.

    Article  MathSciNet  Google Scholar 

  59. Nastic, A., Vijay, M., Tieu, A., Rahmati, S., & Jodoin, B. (2017). Experimental and numerical study of the influence of substrate surface preparation on adhesion mechanisms of aluminum cold spray coatings on 300 M steel substrates. Journal of Thermal Spray Technology, 26, 1461–1483.

    Article  Google Scholar 

  60. Parra Denis, E., Barat, C., Jeulin, D., & Ducottet, C. (2008). 3D complex shape characterization by statistical analysis: application to aluminium alloys. Materials Characterization, 59, 338–343.

    Article  Google Scholar 

  61. Pasandideh-Fard, M., & Mostaghimi, J. (1995). On the spreading and solidification of molten particles in a plasma spray process effect of thermal contact resistance. Plasma Chemistry and Plasma Processing, 16(S1), S83–S98.

    Article  Google Scholar 

  62. Pattison, J., Celotto, S., Morgan, R., Bray, M., & O’Neill, W. (2007). Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication. International Journal of Machine Tools and Manufacture, 47(3–4), 627–634.

    Article  Google Scholar 

  63. Preston, D. L., Tonks, D. L., & Wallace, D. C. (2003). Model of plastic deformation for extreme loading conditions. Journal of Applied Physics, 93(1), 211–220.

    Article  Google Scholar 

  64. Rahmati, S., & Ghaei, A. (2014). The use of particle/substrate material models in simulation of cold-gas dynamic-spray process. Journal of Thermal Spray Technology, 23(3), 530–540.

    Article  Google Scholar 

  65. Raoelison, R. N., Verdy, C., & Liao, H. (2017). Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Materials and Design, 133, 266–287.

    Article  Google Scholar 

  66. Rolland, G. (2011). Laser-induced damage in cold-sprayed composite coatings. Surface and Coatings Technology, 205, 4915–4927.

    Article  Google Scholar 

  67. Sabard, A., de Villiers Lovelock, H. L., & Hussain, T. (2018). Microstructural evolution in solution heat treatment of gas-atomized Al alloy (7075) powder for cold spray. Journal of Thermal Spray Technology, 27(1–2), 145–158.

    Article  Google Scholar 

  68. Schmidt, T., Gärtner, F., Assadi, H., & Kreye, H. (2006). Development of a generalized parameter window for cold spray deposition. Acta Materialia, 54(3), 729–742.

    Article  Google Scholar 

  69. Sunil, P., & Gobinda, S. C. (2017). Development of sustainable cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: A critical review. Coatings, 7(8), 1–27.

    Google Scholar 

  70. Trifa, F. I., Montavon, G., & Coddet, C. (2007). Model-based expert system for design and simulation of APS coatings. Journal of Thermal Spray Technology, 16(1), 128–139.

    Article  Google Scholar 

  71. Trinchi, A., et al. (2011). Copper surface coatings formed by the cold spray process: Simulations based on empirical and phenomenological data. Journal of Thermal Spray Technology, 20(5), 986–991.

    Article  Google Scholar 

  72. Vardelle, M., Vardelle, A., Leger, A. C., Fauchais, P., & Gobin, D. (1995). Influence of particle parameters at impact on splat formation and solidification in plasma spraying processes. Journal of Thermal Spray Technology, 4(1), 50–58.

    Article  Google Scholar 

  73. Vardelle, A., Moreau, C., Akedo, J., Ashrafizadeh, H., Berndt, C. C., Berghaus, J. O., et al. (2016). The 2016 thermal spray roadmap. Journal of Thermal Spray Technology, 25(8):1376–1440.

    Google Scholar 

  74. Vo, P., & Martin, M. (2017a). Layer-by-layer buildup strategy for cold spray additive manufacturing. In J. Jerzembeck, et al. (Eds.), Proceedings of the 2017 International Thermal Spray Conference (pp. 714–718). Düsseldorf: DVS Media GmbH.

    Google Scholar 

  75. Vo, P., & Martin, M. (2017b). Layer-by-layer buildup strategy for cold spray additive manufacturing. Pdf presentation available via https://www.coldsprayteam.com/Vo_Martin_CSAT2017%20%20Vo%20and%20Martin%20vfinal.pdf. Accessed June 2, 2019.

  76. Weiller, S., Debray, A., Gaslin, F., Sennour, M., Delloro, F., Jeandin, M., & Garion, C. (2019). Cold spray as an innovative process to develop leak tight aluminum coatings for ultrahigh vacuum applications in a large particle high-energy collider. In F. Azarmi, et al. (Eds.), Proceedings of the International Thermal Spray Conference (ITSC 2019) (pp. 831–837), May 26–29, 2019, Yokohama, Japan.

    Google Scholar 

  77. Wu, H., Xie, X., Deng, S., & Liao, H. (2019). A new approach to simulate coating thickness in cold spray. In F. Azarmi, et al. (Eds.), Proceedings of the International Thermal Spray Conference (pp. 165–171), May 26–29, 2019, Yokohama, Japan.

    Google Scholar 

  78. Xie, J., Nélias, D., Walter-Le Berre, H., Ogawa, K., & Ichikawa, Y. (2015). Simulation of the cold spray particle deposition process. Journal of Tribology, 137(4).

    Google Scholar 

  79. Zerilli, F. J., & Armstrong, R. W. (1987). Dislocation-mechanics-based constitutive relations for material dynamics calculations. Journal of Applied Physics, 61(5), 1816–1825.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank warmly Gilles Surdon and Kevin Roche from Dassault-Aviation/Mérignac, Erick Meillot from CEA/Le Ripault, and Pascal Lemeille from Mallard SA/Saint-Antoine-la-Forêt, all of them for technical assistance, fruitful discussions and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Delloro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeandin, M., Delloro, F., Bunel, M. (2020). Advanced Modeling and Simulation Tools to Address Build-Up Issues in Additive Manufacturing by Cold Spray. In: Pathak, S., Saha, G. (eds) Cold Spray in the Realm of Additive Manufacturing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-42756-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42756-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42755-9

  • Online ISBN: 978-3-030-42756-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics