Abstract
Patagonia has a great diversity of lizards, including 6 families, 11 genera, and 163 species. The majority of this diversity with documented geographical records corresponds to the Liolaemidae family (Phymaturus and Liolaemus). Latitudinally, lizard richness is higher between 37° and 39° S, decreasing gradually until latitude 54° S; longitudinally, it is higher between 69° and 71° W. The georeferenced records and the number of collected specimens have some biases, with higher values in the northern regions (up to latitude 42° S). However, there are areas up to latitude 45° S with species richness similar to others with a greater number of collected individuals. The vegetation units with the highest species richness (S) in Argentinean Patagonia are the northern and central areas reaching west of Chubut Province: Western District (S = 60) and Typical Southern Monte (S = 49), passing through areas with intermediate richness and with only one species (Wet Magellanic Steppe) or none (Evergreen shrub, Monte’s Mountains and Valleys, Western Interior Pampa, and Peat Bogs). There is a general trend toward lower species richness in vegetation units located in the extreme south of Argentina and south of latitude 41° S in Chile. We evaluated differences in lizard diversity and evenness among vegetation units through a dendrogram based on species incidences and found six clusters. Then, we compared species richness between members of each cluster with rarefaction curves. Species marginally distributed in Patagonia have a narrower altitudinal range than Patagonian endemics. Species in genus Liolaemus have small differences in altitudinal range, but species of Phymaturus have pronounced differences in altitudinal ranges. Our spatial analyses, based on intensive systematic-taxonomic activity over the last two decades, shed light into the understanding of lizard distributions in one of the regions with the greatest diversity of reptiles in the world. We also provide ecological and spatial metrics for an updated list of Patagonian lizards. We highlight that the usefulness of discretizing large volumes of information and geographic space into a synthetic framework allows using quantitative results for the study of spatial patterns of biodiversity, decision-making for design studies, use of resources, and creation of protected areas.
Keywords
- Geographic
- Distribution
- Range
- Diversity
- Lizards
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abdala CS, Díaz Gómez JM, Juarez Heredia VI (2012a) From the far reaches of Patagonia: new phylogenetic analyses and description of two new species of the Liolaemus fitzingerii clade (Iguania: Liolaemidae). Zootaxa 3301:34–60
Abdala CS, Semhan RV, Moreno Azócar DL et al (2012b) Taxonomic study and morphology based phylogeny of the patagonic clade Liolaemus melanops group (Iguania: Liolaemidae), with the description of three new taxa. Zootaxa 3163:1–32
Aguiar MR, Paruelo JM, Sala OE, Lauenroth WK (1996) Ecosystem responses to changes in plant functional type composition: an example from the Patagonian steppe. J Veg Sci 7:381–390. https://doi.org/10.2307/3236281
Albino AM (2011) Evolution of Squamata Reptiles in Patagonia based on the fossil record. Biol J Linn Soc 103:441–457
Ares J, Beeskow A, Bertiller M et al (1995) Structural and dynamic characteristics of overgrazed lands of northern Patagonia, Argentina. In: Breymeyer A (ed) Managed grasslands. Elsevier Science Publishers B.V, Amsterdam, pp 149–175
Avila LJ, Morando M, Sites JW Jr (2008) New species of the iguanian lizard genus Liolaemus (Squamata, Iguania, Liolaemini) from Central Patagonia, Argentina. J Herpetol 42:186–196. https://doi.org/10.1670/06-244r2.1
Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Bot Rev 73:31–50. https://doi.org/10.1663/0006-8101(2007)73[31:PVTDTP]2.0.CO;2
Barros VR, Boninsegna JA, Camilloni IA et al (2015) Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Clim Change 6:151–169. https://doi.org/10.1002/wcc.316
Becker RA, Wilks AR (2018) Maps: draw geographical maps. https://CRAN.R-project.org/package=maps. Accessed 3 Aug 2018
Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653. https://doi.org/10.1006/jare.1996.0247
Bivand R, Lewin-Koh N (2018) maptools: tools for reading and handling spatial objects. R package version 0.9-2. https://CRAN.R-project.org/package=maptools. Accessed 28 Mar 2016
Bivand R, Rundel C (2018) rgeos: interface to geometry engine – open source (GEOS). R package version 0.3-28. https://CRAN.R-project.org/package=rgeos. Accessed 28 Mar 2016
Bivand R, Keitt T, Rowlingson B (2018) rgdal: bindings for the geospatial data abstraction library. R package version 1.3-3. https://CRAN.R-project.org/package=rgdal. Accessed 28 Mar 2016
Böhm M, Collen B, Baillie JEM et al (2013) The conservation status of the world’s reptiles. Biol Conserv 157:372–385. https://doi.org/10.1016/j.biocon.2012.07.015
Brunsdon C, Chen H (2014) GISTools: Some further GIS capabilities for R. https://CRAN.R-project.org/package=GISTools. Accessed 3 Aug 2018
Buddle CM, Beguin J, Bolduc E et al (2005) The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. Can Entomol 137:120–127. https://doi.org/10.4039/n04-040
Burkart R, Bárbaro NO, Sánchez RO, Gómez DA (1999) Ecorregiones de la Argentina. Administración de Parques Nacionales, Buenos Aires
Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería
Cabrera AL (1994) Regiones fitogeograficas argentinas. Buenos Aires
Celedón-Neghme C, Salgado CR, Victoriano PF (2005) Preferencias alimentarias y potencial dispersor del lagarto herbívoro Phymaturus flagellifer (Tropiduridae) en Los Andes. Gayana (Concepc) 69
Cesa A, Paruelo JM (2011) Changes in vegetation structure induced by domestic grazing in Patagonia (Southern Argentina). J Arid Environ 75:1129–1135. https://doi.org/10.1016/j.jaridenv.2011.04.003
Chamberlain S, Barve V, Mcglinn D et al (2018) rgbif: Interface to the Global “Biodiversity” Information Facility API. https://CRAN.R-project.org/package=rgbif. Accessed 3 Aug 2018
Chao A, Chiu C-H (2016) Species richness: estimation and comparison. In: Balakrishnan N, Colton T, Everitt B et al (eds) Wiley StatsRef: statistics reference online. Wiley, Chichester, pp 1–26
Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. https://doi.org/10.1111/j.1461-0248.2004.00707.x
Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498. https://doi.org/10.1007/s00442-003-1311-7
Clements F, Shelford V (1939) Bio-cology. Wiley/Chapman & Hall, New York/London
Colwell RK (2009) Biodiversity: concepts, patterns, and measurement. In: The Princeton guide to ecology. pp 257–263
Cook CN, Possingham HP, Fuller RA (2013) Contribution of systematic reviews to management decisions: systematic reviews. Conserv Biol 27:902–915. https://doi.org/10.1111/cobi.12114
Cooper WE (1997) Correlated evolution of prey chemical discrimination with foraging, lingual morphology and vomeronasal chemoreceptor abundance in lizards. Behav Ecol Sociobiol 41:257–265. https://doi.org/10.1007/s002650050387
Corbalán V, Debandi G (2014) Resource segregation in two herbivorous species of mountain lizards from Argentina. Herpetol J 24:201–208
Cox CB, Moore PD (2010) Biogeography: an ecological and evolutionary approach. Wiley
Cruz FB, Belver L, Acosta JC et al (2009) Thermal biology of Phymaturus lizards: evolutionary constraints or lack of environmental variation? Zoology 112:425–432
Dengler J (2009) A flexible multi-scale approach for standardised recording of plant species richness patterns. Ecol Indic 9:1169–1178. https://doi.org/10.1016/j.ecolind.2009.02.002
Frost DR, Etheridge R, Janies D, Titus TA (2001) Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). Am Mus Novit:1–39. https://doi.org/10.1206/0003-0082(2001)343<0001:tesaeo>2.0.co;2
Gamble T, Bauer AM, Greenbaum E, Jackman TR (2008) Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). Zool Scr 37:355–366. https://doi.org/10.1111/j.1463-6409.2008.00330.x
Gardener M (2014) Community ecology: analytical methods using R and Excel. Pelagic Publishing Ltd
Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
Gray JE (1827) A synopsis of the genera of the saurian reptiles, in which some new genera are indicated, and the others reviewed by actual examination. Philos Mag 2:54–58. https://doi.org/10.1080/14786442708675620
Gray JE (1865) A revision of the genera and species of amphisbaenians, with the descriptions of some new species now in the collections of the British Museum. Proc Zool Soc London 1865:442–455
Halloy M, Robles C, Salica MJ et al (2013) Aportes en el estudio del comportamiento y ecología de lagartijas de los géneros Liolaemus y Phymaturus (Iguania: Liolaemini). Cuad Herpetol 27:15–26
Hijmans RJ (2015) Geosphere: spherical trigonometry. R package version 1.5-7. https://CRAN.R-project.org/package=geosphere. Accessed 28 Mar 2016
Hijmans RJ (2017) Raster: geographic data analysis and modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster. Accessed 28 Mar 2016
Ibargüengoytía NR (2005) Field, selected body temperature and thermal tolerance of the syntopic lizards Phymaturus patagonicus and Liolaemus elongatus (Iguania: Liolaemidae). J Arid Environ 62:435–448
Jongman R, Ter Braak C, Van Tongeren O (1995) Data analysis in community and landscape ecology. Cambridge University Press
León RJC, Bran D, Collantes M et al (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral:125–144
Liang M, Buckley LB, Huey RB, Du W-G (2018) A global test of the cold-climate hypothesis for the evolution of viviparity of squamate reptiles. Glob Ecol Biogeogr 27:679–689. https://doi.org/10.1111/geb.12730
Lobo F, Barrasso DA, Hibbard T, Basso NG (2016) On the evolution and diversification of an Andean clade of reptiles: combining morphology and DNA sequences of the palluma group (Liolaemidae: Phymaturus). Zool J Linnean Soc 176:648–673. https://doi.org/10.1111/zoj.12335
Luebert F, Pliscoff P (2017) Sinopsis bioclimática y vegetacional de Chile, 2nd edn. Editorial Universitaria, Santiago
Maechler M, Rousseeuw P, Struyf A et al (2018) Cluster: “Finding Groups in Data”: cluster analysis extended. https://CRAN.R-project.org/package=cluster. Accessed 3 Aug 2018
Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems — a southern perspective. Trends Ecol Evol 10:143–147. https://doi.org/10.1016/S0169-5347(00)89023-0
Masiokas MH, Villalba R, Luckman BH et al (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Glob Planet Chang 60:85–100. https://doi.org/10.1016/j.gloplacha.2006.07.031
McGarigal K, Cushman SA, Stafford S (2013) Multivariate statistics for wildlife and ecology research. Springer Science & Business Media
Morello J, Matteucci S, Rodríguez A, Silva M (eds) (2012) Ecorregiones y complejos ecosistémicos argentinos, Primera edición. Facultad de Arquitectura, Diseño y Urbanismo, GEPAMA Grupo de Ecología del Paisaje y Medio Ambiente, Universidad de Buenos Aires, Buenos Aires
Morrone JJ (2001a) Biogeografía de América Latina y el Caribe. M&T–Manuales & Tesis SEA, Zaragoza
Morrone JJ (2001b) Review of the biogeographic provinces of the Patagonian subregion. Rev Soc Entomol Argent 60:1–8
Oksanen J, Blanchet FG, Friendly M et al (2018) Vegan: community ecology package. https://CRAN.R-project.org/package=vegan. Accessed 3 Aug 2018
Olave M, Avila LJ, Sites JW, Morando M (2014) Multilocus phylogeny of the widely distributed South American lizard clade Eulaemus (Liolaemini, Liolaemus). Zool Scr 43:323–337. https://doi.org/10.1111/zsc.12053
Olave M, Avila LJ, Sites JW, Morando M (2015) Model-based approach to test hard polytomies in the Eulaemus clade of the most diverse South American lizard genus Liolaemus (Liolaemini, Squamata). Zool J Linn Soc. https://doi.org/10.1111/zoj.12231
Olea RA (1984) Sampling design optimization for spatial functions. Math Geol 16:369–392. https://doi.org/10.1007/BF01029887
Oppel M (1811) Die Ordnungen, Familien und Gattungen der reptilien als prodom einer naturgeschichte derselben. Joseph Lindauer Verlag, München
Oyarzabal M, Clavijo J, Oakley L et al (2018) Unidades de vegetación de la Argentina. Ecol Austral 28:040–063
Palmeirim AF, Vieira MV, Peres CA (2017) Herpetofaunal responses to anthropogenic forest habitat modification across the neotropics: insights from partitioning β-diversity. Biodivers Conserv:1–15. https://doi.org/10.1007/s10531-017-1394-9
Paruelo JM, Beltran A, Jobbagy E et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101
Pebesma E, Bivand R (2005) sp: classes and methods for spatial data in R. In: R News 5 (2). http://cran.r-project.org/doc/Rnews/. Accessed 28 Mar 2016
Pianka ER (1986) Ecology and natural history of desert lizards: analyses of the ecological niche and community structure. Princeton University Press
Pietrek AG, Walker RS, Novaro AJ (2009) Susceptibility of lizards to predation under two levels of vegetative cover. J Arid Environ 73:574–577. https://doi.org/10.1016/j.jaridenv.2008.12.019
Pincheira-Donoso D, Hodgson DJ, Tregenza T (2008) The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol Biol 8:1–13. https://doi.org/10.1186/1471-2148-8-68
Pincheira-Donoso D, Harvey LP, Ruta M (2015) What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation. BMC Evol Biol 15:153. https://doi.org/10.1186/s12862-015-0435-9
Ponce JF, Rabassa J, Coronato A, Borromei AM (2011) Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol J Linn Soc 103:363–379. https://doi.org/10.1111/j.1095-8312.2011.01653.x
Pyron RA, Burbrink FT (2014) Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecol Lett 17:13–21. https://doi.org/10.1111/ele.12168
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 15 Mar 2018
Rabassa J (2008) Late Cenozoic Glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) Developments in quaternary sciences. Elsevier, pp 151–204
Rabassa J, Coronato A (2009) Glaciations in Patagonia and Tierra del Fuego during the Ensenadan stage/age (early Pleistocene–earliest middle Pleistocene). Quat Int 210:18–36. https://doi.org/10.1016/j.quaint.2009.06.019
Real R, Vargas JM, Olmstead R (1996) The probabilistic basis of Jaccard’s index of similarity. Syst Biol 45:380–385. https://doi.org/10.1093/sysbio/45.3.380
Roig AF (1998) La vegetación de la Patagonia. In: Correa MN (ed) Flora Patagónica. Colección científica del INTA, Buenos Aires, pp 48–174
Ruzzante D, Rabassa J (2011) Palaeogeography and palaeoclimatology of Patagonia: effects on biodiversity. Biol J Linn Soc 103:221–228
Sanmartín I (2012) Historical biogeography: evolution in time and space. Evolution 5:555–568. https://doi.org/10.1007/s12052-012-0421-2
Schulze E-D, Mooney HA, Sala OE et al (1996) Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108:503–511. https://doi.org/10.1007/bf00333727
Sodhi NS, Ehrlich PR (1995) Conservation biology for all. Oxford University Press
Spellerberg IF, Sawyer JWD, Whitten T (1999) An introduction to applied biogeography, 1st edn. Cambridge University Press, Cambridge
Tennekes M (2018) tmaptools: thematic map tools. https://CRAN.R-project.org/package=tmaptools. Accessed 3 Aug 2018
Thompson ME, Nowakowski AJ, Donnelly MA (2016) The importance of defining focal assemblages when evaluating amphibian and reptile responses to land use. Conserv Biol 30:249–258. https://doi.org/10.1111/cobi.12637
Troncoso-Palacios J, Díaz HA, Puas GI et al (2016) Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae). ZooKeys 632:121–146. https://doi.org/10.3897/zookeys.632.9528
Troncoso-Palacios J, Esquerré D, Urra FA et al (2018) The true identity of the new world iguanid lizard Liolaemus chillanensis Müller and Hellmich 1932 (Iguania: Liolaemidae) and description of a new species in the Liolaemus elongatus group. Zool Stud:1–19
VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2014) SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. https://CRAN.R-project.org/package=SDMTools. Accessed 3 Aug 2018
Vera-Escalona I, D’Elía G, Gouin N et al (2012) Lizards on ice: evidence for multiple refugia in Liolaemus pictus (Liolaemidae) during the last glacial maximum in the southern andean beech forests. PLoS One 7:e48358. https://doi.org/10.1371/journal.pone.0048358
White D (2000) Global grids from recursive diamond subdivisions of the surface of an octahedron or icosahedron. Environ Monit Assess 64:93–103. http://dx.doi.org.erl.lib.byu.edu/10.1023/A:1006407023786
White D, Kimerling JA, Overton SW (1992) Cartographic and geometric components of a global sampling design for environmental monitoring. Cartogr Geogr Inf Syst 19:5–22. https://doi.org/10.1559/152304092783786636
Yfantis EA, Flatman GT, Behar JV (1987) Efficiency of kriging estimation for square, triangular, and hexagonal grids. Math Geol 19:183–205. https://doi.org/10.1007/BF00897746
Acknowledgements
We thank all curators of the consulted collections, P. F. Victoriano and J. Troncoso-Palacios for Chilean localities, past and present members of the Grupo de Herpetología Patagónica for help in field trips and laboratory tasks, in special to N. Frutos, M. L. Kozykariski, N. Feltrin (in memoriam), M. F. Breitman, C. D. Medina, J. Goldman, C. A. Durante, R. Neyro Martínez and M. Olave; F. Lobo for museum data, L. C. Belver for specimens data and D. E. Udrizar Sauthier for donation of some specimens.
Financial support for fieldwork was provided by a CONICET fellowship issued to I. Minoli, grants from ANPCYT (FONCYT PICT 2006-00506, 33789, 2011-0784, 1397), and CONICET (PEI 2001-6397, PIP 2005-6469), several small grants from Brigham Young University (including Monte L. Bean Museum, College of Agriculture and Biology, Department of Biology, Kennedy Center for International Studies) (granted to J. W. Sites Jr.), and mainly from the National Science Foundation grant “Partnership for International Research and Education” award (OISE 0530267) for support for collaborative research on Patagonian biodiversity granted to the following institutions (listed alphabetically): Brigham Young University, Centro Nacional Patagónico, Dalhousie University, Darwinion Botanical Institute, Universidad Austral de Chile, Universidad Nacional del Comahue, Universidad Nacional de Córdoba, Universidad de Concepción, and University of Nebraska (issued to J. Johnson). This chapter was written within the framework of the PUE-IPEEC-2016 22920160100044. LJA and MM are CONICET researchers, IM CONICET fellowships and CHFP CONICET technical assistant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Minoli, I., Pérez, C.H.F., Morando, M., Avila, L.J. (2020). Biogeography, Ecology, and Spatial Patterns of Patagonian Lizards. In: Morando, M., Avila, L.J. (eds) Lizards of Patagonia. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-030-42752-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-42752-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-42751-1
Online ISBN: 978-3-030-42752-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)