Skip to main content

Effects of Acute and Chronic Environmental Disturbances on Lizards of Patagonia

  • Chapter
  • First Online:
Lizards of Patagonia

Abstract

The extent of stress caused by acute and chronic environmental disturbances depends on the adaptive ability of organisms to behaviorally and physiologically adjust to change and on the timing and magnitude of the disturbances. This resilience is a result of numerous exposures to perturbations throughout the evolution of the species. In Patagonia, volcanic eruptions have caused larger and variable perturbations on populations and communities. The 2011 eruption of the Puyehue-Cordón Caulle volcano dispersed 100 M tons of pyroclastic material and accumulated ash layers of 30 cm. At the same time, a gradual but chronic increase in temperature, intensified by ozone depletion, affected especially taxa sensitive to thermal fluctuations. Nevertheless, species from cold temperate environments like Patagonia and the Andean mountains could benefit from warming as their body temperatures are commonly below preferred and optimum temperatures for performance. Eventually, cold temperate environments may provide refuge for northern or lowland species that while shifting their geographic ranges will potentially impact local populations by competing for resources and transporting novel pathogens. In this chapter, we summarize studies on physiological traits of Patagonian lizards and discuss the biotic and abiotic factors involved in the evolution of these species. We integrate concepts of thermal biology, analyzing the relationship between the immune system and body temperature, and examining the thermal sensitivity and plasticity of locomotion, development, and growth rates using different geographic and temporal scales. The complex interplay of the ecophysiological strategies in Patagonian lizards is discussed based on their legacy of survival, having withstood and recovered from the extreme thermal fluctuations and catastrophic events for over ~140 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adolph SC, Porter WP (1993) Temperature, activity, and lizard life histories. Am Nat 142(2):273–295

    CAS  PubMed  Google Scholar 

  • Aguilar R, Cruz FB (2010) Refuge use in a Patagonian nocturnal lizard, Homonota darwini: the role of temperature. J Herpetol 44:236–241

    Google Scholar 

  • Aidam A, Michel CL, Bonnet X (2013) Effect of ambient temperature in neonate aspic vipers: growth, locomotor performance and defensive behaviors. J Exp Zool A Ecol Genet Physiol 319(6):310–318

    PubMed  Google Scholar 

  • Alexander LV, Allen SK, Bindoff NL et al (2013) IPCC. Summary for policy makers. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 1–18

    Google Scholar 

  • Al-Sadoon MK (1986) Influence of a broad temperature range on the oxygen consumption rates of three desert lizard species. Comp Biochem Physiol A Comp Physiol 84(2):339–344

    CAS  PubMed  Google Scholar 

  • Al-Sadoon MK (1987) The influence of temperature and activity on aerobic and anaerobic metabolism in the viviparous lizard, Lacerta vivipara (Jacquin). Herpetol J 1(5):181–185

    Google Scholar 

  • Angilletta MJ Jr, Hill T, Robson MA (2002) Is physiological performance optimized by thermoregulatory behavior? A case study of the eastern fence lizard, Sceloporus undulatus. J Therm Biol 27:199–204

    Google Scholar 

  • Angilletta MJ Jr, Zelic MH, Adrian GJ et al (2013) Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus). Conserv Physiol 1(1):cot018

    Google Scholar 

  • Arendt WJ, Gibbons DW, Gray GAL (1999) Status of the volcanically threatened Montserrat oriole Icterus oberi and other forest birds in Montserrat, West Indies. Bird Conserv Int 9:351–372

    Google Scholar 

  • Artacho P, Saravia J, Perret S et al (2017) Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. J Therm Biol 63:78–87

    PubMed  Google Scholar 

  • Avery RA (1976) Thermoregulation, metabolism and social behaviour in Lacertidae. In: d’A Bellairs A, Cox CB (eds) Morphology and biology of reptiles. Linnean Society Symposium Series 3, London, pp 245–259

    Google Scholar 

  • Ayris PM, Delmelle P (2012) The immediate environmental effects of tephra emission. Bull Volcanol 74(9):1905–1936

    Google Scholar 

  • Badyaev AV (2005) Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Philos Trans R Soc Lond Ser B Biol Sci 272:877–886

    Google Scholar 

  • Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. Am Zool 32:194–216

    Google Scholar 

  • Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411:183–186

    CAS  PubMed  Google Scholar 

  • Barros VR, Scian BV, Mattio HF (1979) Campos de precipitación de la provincia de Chubut (1931–1960). Geoacta 10:175–192

    Google Scholar 

  • Barros VR, Boninsegna JA, Camilloni IA et al (2014) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip Rev Clim Chang 6:151–169

    Google Scholar 

  • Bartholomew GA (2005) Integrative biology: an organismic biologist’s point of view. Integr Comp Biol 45:330–332

    PubMed  Google Scholar 

  • Bauwens D, Garland T Jr, Castilla AM et al (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49:848–863

    PubMed  Google Scholar 

  • Becker LA, Boretto JM, Cabezas-Cartes F, Márquez S, Kubisch E, Scolaro JA, Sinervo B, Ibargüengoytía NR (2019) An integrative approach to elucidate the taxonomic status of five species of Gravenhorst, 1837 (Squamata: Liolaemidae) from northwestern Patagonia, Argentina. Zool J Linnean Soc 185:268–282

    Google Scholar 

  • Bermudez A, Delpino D (2011) La actividad el volcán Puyehue y su impacto sobre el territorio de la República Argentina. First Report. CONICET – UNCOMA, Neuquén

    Google Scholar 

  • Bestion E, Teyssier A, Richard M et al (2015) Live fast, die young: experimental evidence of population extinction risk due to climate change. PLoS Biol 13:1–19

    Google Scholar 

  • Biondi F, Estrada IG, Ruiz JCG et al (2003) Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico. Quat Res 59:293–299

    Google Scholar 

  • Bonino MF, Moreno-Azócar DL, Tulli MJ et al (2011) Running in cold weather: morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J Exp Zool A Ecol Genet Physiol 315:495–503

    PubMed  Google Scholar 

  • Bonino MF, Moreno-Azócar DL, Schulte JA et al (2015) Climate change and lizards: changing species’ geographic ranges in Patagonia. Reg Environ Change 15(6):1121–1132

    Google Scholar 

  • Boretto JM, Ibargüengoytía NR (2006) Asynchronous spermatogenesis and biennial female cycle of the viviparous lizard Phymaturus antofagastensis (Liolaemidae): reproductive responses to high altitudes and temperate climate of Catamarca, Argentina. Amphibia-Reptilia 27:25–36

    Google Scholar 

  • Boretto JM, Ibargüengoytía NR (2009) Phymaturus of Patagonia, Argentina: reproductive biology of Phymaturus zapalensis (Liolaemidae) and a comparison of sexual dimorphism within the genus. J Herpetol 43:96–104

    Google Scholar 

  • Boretto JM, Cabezas-Cartes F, Kubisch EL et al (2014) Changes in female reproduction and body condition in an endemic lizard, Phymaturus spectabilis, following the Puyehue volcanic ashfall event. Herpetol Conserv Biol 9:181–191

    Google Scholar 

  • Boretto JM, Cabezas-Cartes F, Ibargüengoytía NR (2015) Energy allocation to growth and reproduction in a viviparous lizard endemic to the highlands of the Andes, Argentina. J Zool 297(1):77–86

    Google Scholar 

  • Boretto JM, Cabezas-Cartes F, Ibargüengoytía NR (2018) Slow life histories in lizards living in the highlands of the Andes Mountains. J Comp Physiol B 188:491–503

    PubMed  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Google Scholar 

  • Buckley LB, Huey RB (2016) Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob Chang Biol 22(12):3829–3842

    PubMed  Google Scholar 

  • Buckley LB, Tewksbury JJ, Deutsch CA (2013) Can terrestrial ectotherms escape the heat of climate change by moving? Proc R Soc Lond B Biol Sci 280:20131149

    Google Scholar 

  • Butcher GS (1981) General notes. Murrelet 62:15–16

    Google Scholar 

  • Buteler M, Stadler T, Lopez Garcia GP et al (2011) Insecticidal properties of ash from the volcanic complex Puyehue-Caulle Range and their possible environmental impact. Rev Soc Entomol Argent 70:149–156

    Google Scholar 

  • Buteler M, López García GP, Pochettino AA et al (2014) Insecticidal activity of volcanic ash against Sitophilus oryzae L. (Coleoptera: Curculionidae) under laboratory conditions. Ecol Austral 24:17–22

    Google Scholar 

  • Cabezas-Cartes F (2016) Análisis comparado del crecimiento, longevidad e inversión reproductiva en el género Phymaturus en un gradiente latitudinal y altitudinal. Dissertation, Universidad Nacional del Comahue

    Google Scholar 

  • Cabezas-Cartes F, Kubisch EL, Ibargüengoytía NR (2014) Consequences of volcanic ash deposition on the locomotor performance of the Phymaturus spectabilis lizard from Patagonia, Argentina. J Exp Zool A Ecol Genet Physiol 321(3):164–172

    PubMed  Google Scholar 

  • Cabezas-Cartes F, Boretto JM, Ibargüengoytía NR (2015) Age, growth and life-history parameters of an endemic vulnerable lizard from Patagonia, Argentina. Herpetol J 25:215–224

    Google Scholar 

  • Cabezas-Cartes F, Fernández JB, Duran F, Kubisch EL (2019) Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ 7:e7437. https://doi.org/10.7717/peerj.7437

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadby CD, Jones SM, Wapstra E (2014) Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile. J Exp Biol 217(7):1175–1179

    PubMed  Google Scholar 

  • Cahill AE, Aiello-Lammens ME, Fisher-Reid MC et al (2012) How does climate change cause extinction? Proc R Soc B 280:20121890

    PubMed  Google Scholar 

  • Castanet J, Báez M (1991) Identificación de dos especies de lagartos de un yacimiento sub-fósil de la isla de Hierro (Islas Canarias) con histología ósea. Rev Esp Herpetol 5:43–49

    Google Scholar 

  • Castilla AM, Swallow JG (1996) Thermal dependence of incubation duration under a cycling temperature regime in the lizard, Podarcis hispanica atrata. J Herpetol 30:247–253

    Google Scholar 

  • Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaiten volcano, Chile. Nature 461:780–783

    CAS  PubMed  Google Scholar 

  • Cei JM (1986) Reptiles del centro, centro-Oeste y sur de la Argentina. Herpetofauna de las zonas áridas y semiáridas. Monografia IV. Museo Regionale di Scienze Naturali, Torino

    Google Scholar 

  • Cei JM (1993) Reptiles del Noroeste, Nordeste y Este de la Argentina. Herpetofauna de las Selvas Subtropicales, Puna y Pampas. Monografía XIV. Museo Regionale di Scienze Naturali, Torino

    Google Scholar 

  • Chaneton EJ, Mazía N, Garibaldi LA et al (2014) Impact of volcanic ash deposition on foliar productivity and insect herbivory in northern Patagonia deciduous forests. Ecol Austral 24:51–63

    Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    CAS  PubMed  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8(4):e1000357

    PubMed  PubMed Central  Google Scholar 

  • Clusella-Trullas S, Chown SL (2011) Comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science 332:537

    PubMed  Google Scholar 

  • Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherm simply complex responses to climate change. Am Nat 177:738–751

    PubMed  Google Scholar 

  • Cremona MV, Ferrari J, Lopez S (2011) Las cenizas volcánicas y los suelos de la región. Rev Presencia 57:8–11

    Google Scholar 

  • Cruz F, Belver L, Acosta JC, Villavicencio HJ et al (2009) Thermal biology of Phymaturus lizards: evolutionary constraints or lack of environmental variation? Zoology 112:425–432

    PubMed  Google Scholar 

  • Dale VH, Crissafulli CM, Swanson FJ (2005) 25 years of ecological change at Mount St. Helens. Science 308:961–962

    CAS  PubMed  Google Scholar 

  • Dalsgaard B, Hilton GM, Gray GAL et al (2007) Impacts of a volcanic eruption on the forest bird community of Montserrat, Lesser Antilles. Ibis 149:298–312

    Google Scholar 

  • de Torres Curth MI, Ghermandi L, Pfister G (2008) Los incendios en el noroeste de la Patagonia: su relación con las condiciones meteorológicas y la presión antrópica a lo largo de 20 años. Ecol Austral 18(2):153–167

    Google Scholar 

  • de Vera Porcell, Gonzalez JG (1986) Cardiac responses to temperature in the lizard Gallotia galloti. Comp Biochem Physiol A Physiol 85:389–394

    Google Scholar 

  • De Witt CB (1967) Precision of thermoregulation and its relation to environmental factors in the desert iguana, Dipsosaum dorsalis. Physiol Zool 40:49–66

    Google Scholar 

  • Debandi G, Corbalán V, Scolaro JA et al (2012) Predicting the environmental niche of the genus Phymaturus: are palluma and patagonicus groups ecologically differentiated? Austral Ecol 37:392–400

    Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105(18):6668–6672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donoso-Barros R (1966) Reptiles de Chile. Ediciones Universidad de Chile, Santiago de Chile

    Google Scholar 

  • Du WG, Ji X (2003) The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtlesePelodiscus sinensis. J Therm Biol 28(4):279–286

    Google Scholar 

  • Duran F, Kubisch EL, Boretto JM (2018) Thermal physiology of three sympatric and syntopic Liolaemidae lizards in cold and arid environments of Patagonia (Argentina). J Comp Physiol B 188:141–152

    CAS  PubMed  Google Scholar 

  • Duran F, Boretto JM, Fernández JB, Ibáñez Molina M, Medina M, Ibargüengoytía NR (2019) Impact of immunological state on eco-physiological variables in one of the southernmost lizards in the world. An Acad Bras Cienc 91:e20190055

    PubMed  Google Scholar 

  • Dzierma Y, Wehrmann H (2012) On the likelihood of future eruptions in the Chilean southern volcanic zone: interpreting the past century’s eruption record based on statistical analyses. Andean Geol 39:380–393

    Google Scholar 

  • Edwards JS, Schwartz LM (1981) Mount St. Helens ash: a natural insecticide. Can J Zool 59:714–715

    Google Scholar 

  • Elizalde L (2014) Volcanism and arthropods: a review. Ecol Austral 24(1):3–16

    Google Scholar 

  • Elphick MJ, Shine R (1998) Longterm effects of incubation temperatures on the morphology and locomotor performance of hatchling lizards (Bassiana duperreyi, Scincidae). Biol J Linn Soc 63(3):429–447

    Google Scholar 

  • Espinoza RE, Wiens JJ, Tracy CR (2004) Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc Natl Acad Sci U S A 101:16819–16824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feeley KJ, Silman MR (2010) Land-use and climate change effects on population size and extinction risk of Andean plants. Glob Chang Biol 16:3215–3222

    Google Scholar 

  • Fernández JB, Ibargüengoytía NR (2012) Does acclimation at higher temperatures affect the locomotor performance of one of the southernmost reptiles in the world? Acta Herpetol 7(2):281–296

    Google Scholar 

  • Fernández JB, Smith J Jr, Scolaro A et al (2011) Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J Therm Biol 36:15–22

    Google Scholar 

  • Fernández JB, Kubisch EL, Ibargüengoytía NR (2017) Viviparity advantages in the lizard Liolaemus sarmientoi from the end of the world. J Evol Biol 44(3):325–338

    Google Scholar 

  • Fernández-Arhex V, Buteler M, Amadio ME et al (2013) The effects of volcanic ash from Puyehue-Caulle range eruption on the survival of Dichroplus vittigerum (Orthoptera: Acrididae). Fla Entomol 96(1):286–288

    Google Scholar 

  • Fernández-Arhex V, Pietrantuono AL, Amadio ME et al (2014) Volcanic complex Puyehue-Cordón Caulle: impact of volcanic ash on insects in Patagonia, Argentina. In: Melburn T (ed) Volcanic eruptions: triggers, role of climate change and environmental effects. Nova Science Publishers, pp 141–158

    Google Scholar 

  • Fernández-Arhex V, Amadio ME, Enriquez A et al (2015) Effect of volcanic ash over Orthoptera survival in Patagonia. Ecol Austral 25:81–85

    Google Scholar 

  • Fernández-Arhex V, Amadio ME, Bruzzone OA (2017) Cumulative effects of volcanic ash on the food preferences of two orthopteran species. Insect Sci 24:640–646

    PubMed  Google Scholar 

  • Fuentes ER, Jaksic FM (1979) Activity temperatures of eight Liolaemus (Iguanidae) species in Central Chile. Copeia 1979(3):546–548

    Google Scholar 

  • Gaitán JJ, Ayesa JA, Umaña F et al (2011) Cartografía del área afectada por cenizas volcánicas en las provincias de Río Negro y Neuquén. Laboratorio de Teledetección–SIG. INTA EEA, San Carlos de Bariloche

    Google Scholar 

  • Gause GF (1947) Problems of evolution. Trans Conn Acad Sci 37:17–68

    Google Scholar 

  • Gersich FM, Brusven MA (1982) Volcanic ash accumulation and ash-voiding mechanisms of aquatic insects. J Kansas Entomol Soc 55:290–296

    Google Scholar 

  • Ghermandi GH, González S (2012) Observaciones tempranas de la deposición de ceniza por la erupción volcánica del Cordón Caulle y sus consecuencias sobre la vegetación de la estepa del NO de la Patagonia. Ecol Austral 22:144–149

    Google Scholar 

  • Giacosa RE, Heredia N (2004) Estructura de los Andes Nordpatagónicos en los cordones Piltriquitrón y Serrucho y en el valle de El Bolsón (41° 30 – 42° 00 S), Río Negro. Rev Assoc Geol Arg 59:91–102

    Google Scholar 

  • Giacosa RE, Afonso JC, Heredia CN et al (2005) Tertiary tectonics of the sub Andean region of the North Patagonian Andes, southern Central Andes of Argentina (41 – 42° 30′ S). J S Am Earth Sci 20:157–170

    Google Scholar 

  • Graham AL, Shuker DM, Pollitt LC et al (2011) Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Funct Ecol 25(1):5–17

    Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift of the central and northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Google Scholar 

  • Gutiérrez JA, Krenz JD, Ibargüengoytía NR (2010) Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J Therm Biol 35:332–337

    Google Scholar 

  • Gutiérrez JA, Piantoni C, Ibargüengoytía N (2013) Altitudinal effects on life history parameters in populations of Liolaemus pictus argentinus (Sauria: Liolaemidae). Acta Herpetol 8(1):9–17

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296(5576):2158–2162

    CAS  PubMed  Google Scholar 

  • Hertz PE (1992) Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology 73:1405–1417

    Google Scholar 

  • Hertz PE, Huey RB (1981) Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62:515–521

    Google Scholar 

  • Hertz PE, Huey R, Nevo E (1983) Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37:1075–1084

    PubMed  Google Scholar 

  • Hertz PE, Huey R, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142:796–818

    CAS  PubMed  Google Scholar 

  • Hoffmann AA, Parsons PA (1997) Extreme environmental change and evolution. Cambridge University Press, New York

    Google Scholar 

  • Huang Y, Cheng HL (2013) The impact of climate change on coastal geological disasters in southeastern China. Nat Hazards 65:377–390

    Google Scholar 

  • Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of Reptilia, vol 12. Academic, London, pp 25–74

    Google Scholar 

  • Huey RB, Bennett AF (1987) Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizard. Evolution 41:1098–1115

    PubMed  Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4(5):131–135

    CAS  PubMed  Google Scholar 

  • Huey RB, Kingsolver JG (1993) Evolution of resistance to high temperature in ectotherms. Am Nat 142:S21–S46

    Google Scholar 

  • Huey RB, Slatkin M (1976) Cost and benefits of lizard thermoregulation. Q Rev Biol 51:363–384

    CAS  PubMed  Google Scholar 

  • Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: discussion of approaches. Am Zool 19:357–366

    Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in 13 evolution: a null model approach. Am Nat 161:357–366

    PubMed  Google Scholar 

  • Huey RB, Deutsch CA, Tewksbury JJ et al (2009) Why tropical forest lizards are vulnerable to climate warming. Proc Biol Sci 276(1664):1939–1948

    PubMed  PubMed Central  Google Scholar 

  • Huey RB, Losos JB, Moritz C (2010) Are lizards toast? Science 328:832–833

    CAS  PubMed  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger JA et al (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond Ser B Biol Sci 367:1665–1679

    Google Scholar 

  • Ibargüengoytía NR (2005) Field, selected body temperature and thermal tolerance of the syntopic lizards Phymaturus patagonicus and Liolaemus elongatus (Iguania: Liolaemidae). J Arid Environ 62(2005):435–448

    Google Scholar 

  • Ibargüengoytía NR, Cussac VE (1998) Reproduction of the viviparous lizard Liolaemus elongatus in the highlands of Patagonia: plastic cycles in Liolaemus as a response to climate? Herpetol J 8:99–105

    Google Scholar 

  • Ibargüengoytía NR, Renner M, Boretto JM et al (2007) Thermal effect on locomotion in the nocturnal gecko Homonota darwini (Gekkonidae). Amphibia-Reptilia 28:235–246

    Google Scholar 

  • Ibargüengoytía NR, Acosta JC, Boretto JM et al (2008) Field thermal biology in Phymaturus lizards: comparisons from the Andes to the Patagonian steppe in Argentina. J Arid Environ 72(9):1620–1630

    Google Scholar 

  • Ibargüengoytía NR, Medina SM, Fernández JB et al (2010) Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J Therm Biol 35(1):21–27

    Google Scholar 

  • Ibargüengoytía NR, Cabezas-Cartes F, Boretto JM et al (2016) Volcanic ash from Puyehue-Cordón Caulle eruptions affects running performance and body condition of Phymaturus lizards in Patagonia, Argentina. Biol J Linn Soc 118(4):842–851

    Google Scholar 

  • Intergovernmental Panel on Climate Change – IPCC (2014) Climate change 2014: mitigation of climate change. Working Group III to the IPCC Fifth Assessment Report. Cambridge University Press, Cambridge

    Google Scholar 

  • Irschick DJ, Vanhooydonck B, Herrel A et al (2005) Intraspecific correlations among morphology, performance and habitat use within a green anole lizard (Anolis carolinensis) population. Biol J Linn Soc 85(2):211–221

    Google Scholar 

  • Jaksic FM, Schwenk K (1983) Natural history observations on Liolaemus magellanicus, the southernmost lizard in the world. Herpetologica 39:457–461

    Google Scholar 

  • Kaufmann JS, Bennett AF (1989) The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol Zool 62:1047–1058

    Google Scholar 

  • Kearney MR (2013) Activity restriction and the mechanistic basis for extinctions under climate warming. Ecol Lett 16(12):1470–1479

    Google Scholar 

  • Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc Natl Acad Sci 106:3835–3840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubisch E (2013) Efectos del cambio climático global en el crecimiento y aptitud de tres especies de lagartos. Dissertation, Universidad Nacional del Comahue

    Google Scholar 

  • Kubisch E, Fernández JB, Ibargüengoytía N (2011) Is locomotor performance optimized at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. J Therm Biol 36(6):328–333

    Google Scholar 

  • Kubisch E, Piantoni C, Williams J et al (2012) Do higher temperatures increase growth in the nocturnal gecko Homonota darwini (Gekkota: Phyllodactylidae)? A skeletochronological assessment analyzed at temporal and geographic scales. J Herpetol 46(4):587–595

    Google Scholar 

  • Kubisch E, Corbalán V, Ibargüengoytía NR et al (2016a) Local extinction risk of three species of lizard from Patagonia as a result of global warming. Can J Zool 94:49–59

    Google Scholar 

  • Kubisch E, Fernández J, Ibargüengoytía NR (2016b) Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. J Comp Physiol B 186(2):243–253

    PubMed  Google Scholar 

  • Labra A (1995) Thermoregulation in Pristidactylus lizards (Polycridae): effects of group size. J Herpetol 29:260–264

    Google Scholar 

  • Labra A (1998) Selected body temperature of seven species of Chilean Liolaemus lizards. Rev Chil Hist Nat 71:349–358

    Google Scholar 

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90(4):888–900

    PubMed  Google Scholar 

  • Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in southern Andes (Cordón Caulle; 40.5 S) after the 1960 (mw: 9.5) Chilean earthquake: a structural interpretation. J Volcanol Geoth Res 138:127–138

    CAS  Google Scholar 

  • Leroi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci 91:1917–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CX, Zhang L, Ji X (2008) Influence of pregnancy on locomotor and feeding performances of the skink, Mabuya multifasciata: why do females shift thermal preferences when pregnant? Zoology 111:188–195

    PubMed  Google Scholar 

  • Logan ML, Huynh RK, Precious RA et al (2013) The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Glob Chang Biol 19(10):3093–3102

    PubMed  Google Scholar 

  • Lourdais O, Shine R, Bonnet X et al (2004) Climate affects embryonic development in a viviparous snake, Vipera aspis. Oikos 104(3):551–560

    Google Scholar 

  • Lugo AE (2008) Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecol 33:368–398

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10(3):689–710

    Google Scholar 

  • Marske KA, Ivie MA, Hilton GM (2007) Effects of volcanic ash on the forest canopy insects of Montserrat, West Indies. Environ Entomol 36:817–825

    PubMed  Google Scholar 

  • Martin TL, Huey RB (2008) Why suboptimal is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:E102–E118

    PubMed  Google Scholar 

  • Marvin GA (2003) Aquatic and terrestrial locomotor performance in a semiaquatic plethodontid salamander (Pseudotriton ruber): influence of acute temperature, thermal acclimation, and body size. Copeia 2003(4):704–713

    Google Scholar 

  • Medina M, Gutiérrez J, Scolaro A et al (2009) Thermal responses to environmental constraints in two populations of the oviparous lizard Liolaemus bibronii in Patagonia, Argentina. J Therm Biol 34:32–40

    Google Scholar 

  • Medina M, Scolaro A, Méndez-De la Cruz F et al (2011) Thermal relationships between body temperature and environment conditions set upper distributional limits on oviparous species. J Therm Biol 36(8):527–534

    Google Scholar 

  • Medina M, Scolaro A, Mendez-De la Cruz F et al (2012) Thermal biology of genus Liolaemus: a phylogenetic approach reveals advantages of the genus to survive climate change. J Therm Biol 37(8):579–586

    Google Scholar 

  • Medina M, Fernández JB, Charruau P et al (2016) Vulnerability to climate change of Anolis allisoni in the mangrove habitats of Banco Chinchorro Islands, Mexico. J Therm Biol 58:8–14

    PubMed  Google Scholar 

  • Meehl GA, Stocker CM, Bowker TF et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Minoli I, Avila LJ (2017) Conservation assessments in climate change scenarios: spatial perspectives for present and future in two Pristidactylus (Squamata: Leiosauridae) lizards from Argentina. Zootaxa 4237(1):91–111. https://doi.org/10.11646/zootaxa.4237.1.5

    Article  Google Scholar 

  • Minoli I, Cacciali P, Morando M, Avila LJ (2019) Predicting spatial and temporal effects of climate change on the South American lizard genus Teius (Squamata: Teiidae). Amphibia-Reptilia 40:313–326. https://doi.org/10.1163/15685381-20181070

    Article  Google Scholar 

  • Mora M, Labra A (2017) The response of two Liolaemus lizard species to ash from fire and volcanism. J Herpetol 51(3):388–395

    Google Scholar 

  • Morales CL, Saez A, Arbetman MP et al (2014) Detrimental effects of volcanic ash deposition on bee fauna and plant-pollinator interactions. Ecol Austral 24:42–50

    Google Scholar 

  • Moreno-Azócar DL, Vanhooydonck B, Bonino MF et al (2013) Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards. Oecologia 171(4):773–788

    Google Scholar 

  • O’Grady SP, Morando M, Avila L et al (2005) Correlating diet and digestive tract specialization: examples from the lizard family Liolaemidae. Zoology 108:201–210

    PubMed  Google Scholar 

  • Paranjpe DA, Bastiaans E, Patten A et al (2013) Evidence of maternal effects on temperature preference in side-blotched lizards: implications for evolutionary response to climate change. Ecol Evol 3:1977–1991

    PubMed  PubMed Central  Google Scholar 

  • Paranjpe DA, Medina D, Nielsen E et al (2014) Does thermal ecology influence dynamics of side-blotched lizards and their micro-parasites? Am Zool 54(2):108–117

    Google Scholar 

  • Paruelo JM, Jobbagy EG, Sala OE et al (1998) Functional and structural convergence of temperate grassland and shrub land ecosysytems. Ecol Appl 8:194–206

    Google Scholar 

  • Pedersen SC, Popowics TE, Kwiecinski GG et al (2012) Sublethal pathology in bats associated with stress and volcanic activity on Montserrat, West Indies. J Mammal 93:1380–1392

    Google Scholar 

  • Perez CHF, Frutos N, Kozykariski M et al (2011) Lizards of Rio Negro Province, northern Patagonia, Argentina. Check List 7(3):202–219

    Google Scholar 

  • Pianka ER, Pianka HD (1970) The ecology of Moloch horridus (Lacertilia: Agamidae) in Western Australia. Copeia 1970:90–103

    Google Scholar 

  • Piantoni C, Ibargüengoytía NR, Cussac VE (2006) Growth and age of the southernmost distributed gecko of the world (Homonota darwini) studied by skeletochronology. Amphibia-Reptilia 27(3):393–400

    Google Scholar 

  • Piantoni C, Navas CA, Ibargüengoytía NR (2016) Vulnerability to climate warming of four genera of New World iguanians based on their thermal ecology. Anim Conserv 19(4):391–400

    Google Scholar 

  • Pincheira-Donoso D, Scolaro AJ, Sura P (2008) A monographic catalogue on the systematics and phylogeny of the South American iguanian lizard family Liolaemidae (Squamata, Iguania). Zootaxa 1800:1–85

    Google Scholar 

  • Pincheira-Donoso D, Tregenza T, Witt MJ et al (2013) The evolution of viviparity opens opportunities for lizard radiation but drives it into a climatic cul-de-sac. Glob Ecol Biogeogr 22(7):857–867

    Google Scholar 

  • Pincheira-Donoso D, Harvey LP, Ruta M (2015) What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation. BMC Evol Biol 15:153

    PubMed  PubMed Central  Google Scholar 

  • Podolskiy EA (2009) Effects of recent environmental changes on global seismicity and volcanism. Earth Interact 13:1–14

    Google Scholar 

  • Porter WP, Mitchell JW, Beckman WA et al (1973) Behavioral implications of mechanistic ecology: thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13:1–54

    CAS  PubMed  Google Scholar 

  • Qualls CP, Andrews RM (1999) Cold climates and the evolution of viviparity in reptiles: cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus. Biol J Linn Soc 67(3):353–376

    Google Scholar 

  • Robinson NM, Leonard SW, Ritchie EG et al (2013) Refuges for fauna in fire-prone landscapes: their ecological function and importance. J Appl Ecol 50(6):1321–1329

    Google Scholar 

  • Robles CA (2011) Consecuencias de la erupción volcánica sobre la salud del ganado en la Región Patagónica. Rev Presencia 57:20–25

    Google Scholar 

  • Rodriguez-Serrano E, Navas CA, Bozinovic F (2009) The comparative field body Ttemperature among Liolaemus lizards: esting the static and the labile hypotheses. J Therm Biol 34:306–309

    Google Scholar 

  • Ruggiero A, Werenkraut V (2014) Legacy patterns in the abundance of epigaeic mountain beetles after the eruption of the Puyehue-Cordón Caulle volcanic complex (NW Patagonia, Argentina). Ecol Austral 24(1):31–41

    Google Scholar 

  • Saint Girons HS, Castanet J, Bradshaw SD (1989) Démographie comparée de deux populations françaises de Lacerta viridis (Laurenti, 1768). Rev Ecol 44:361–386

    Google Scholar 

  • Sanz JJ, Potti J, Moreno J et al (2003) Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob Chang Biol 9(3):461–472

    Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford

    Google Scholar 

  • Scolaro JA (2005) Reptiles patagónicos: Sur. Una guía de campo. Editorial Universidad Nacional de la Patagonia, Trelew

    Google Scholar 

  • Scolaro A (2006) Reptiles Patagónicos: Norte. Guía de Campo. Universidad Nacional de la Patagonia, Trelew

    Google Scholar 

  • Sears MW, Angilletta MJ, Schuler MS et al (2016) Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc Natl Acad Sci 113(38):10595–10600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour VA, Hinckley TM, Morikawa Y et al (1983) Foliage damage in coniferous trees following volcanic ashfall from Mt. St. Helens. Oecologia 59:339–343

    CAS  PubMed  Google Scholar 

  • Shine R (1995) A new hypothesis for the evolution of viviparity in reptiles. Am Nat 145:809–823

    Google Scholar 

  • Shine R, Elphick MJ (2001) The effect of short-term weather fluctuations on temperatures inside lizard nests, and on the phenotypic traits of hatchling lizards. Biol J Linn Soc 72(4):555–565

    Google Scholar 

  • Siffredi GL, López DR, Ayesa JA et al (2011) Reducción de la accesibilidad al forraje por caída de cenizas volcánicas. Rev Presencia 57:12–14

    Google Scholar 

  • Sinervo B (1990) Evolution of thermal physiology and growth rate between populations of the western fence lizard (Sceloporus occidentalis). Oecologia 83:228–237

    CAS  PubMed  Google Scholar 

  • Sinervo B, Hedges R, Adolph SC (1991) Decreased sprint speed as a cost of reproduction in the lizard Sceloporus occidentalis: variation among populations. J Exp Biol 155(1):323–336

    Google Scholar 

  • Sinervo B, Mendez-de-la-Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    CAS  PubMed  Google Scholar 

  • Sinervo B, Miles DB, Martínez-Méndez N et al (2011) Response to comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science 332:537–538

    Google Scholar 

  • Sinervo B, Miles DB, Wu Y, Méndez de la Cruz FR et al (2018) Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Tibetan Plateau. Integr Zool 13(4):450–470

    PubMed  Google Scholar 

  • Singer BS, Jicha BR, Harper MA et al (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordon Caulle volcanic complex, Chile. Geol Soc Am Bull 120:599–618

    CAS  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    CAS  PubMed  Google Scholar 

  • Stern CR (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70:435–454

    Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65–65

    CAS  PubMed  Google Scholar 

  • Tattersall GJ, Sinclair BJ, Withers PC et al (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol 2(3):2151–2202

    PubMed  Google Scholar 

  • Tognetti R, Lombardi F, Lasserre B et al (2012) Tree-ring responses in Araucaria araucana to two major eruptions of Lonquimay Volcano (Chile). Trees 26:1805–1819

    Google Scholar 

  • Townsend T, Mulcahy GD, Noonan B et al (2011) Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet Evol 61:363–380

    PubMed  Google Scholar 

  • Tracy CR, Christian KA (1986) Ecological relations among space, time, and thermal niche axes. Ecology 67(3):609–615

    Google Scholar 

  • Tulli MJ, Abdala V, Cruz FB (2012) Effects of different substrates on the sprint performance of lizards. J Exp Biol 215:774–784

    PubMed  Google Scholar 

  • Unno H, Futamura K, Morita H et al (2014) Silica and double-stranded RNA synergistically induce bronchial epithelial apoptosis and airway inflammation. Am J Respir Cell Mol Biol 51:344–353

    PubMed  Google Scholar 

  • Van Aalst MK (2006) The impacts of climate change on the risk of natural disasters. Disasters 30:5–18

    PubMed  Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1991) The thermal dependence of foraging behaviour, gut passage rate and food consumption in the lizard Lacerta vivipara. Funct Ecol 5:507–517

    Google Scholar 

  • Veblen TT, Kitzberger T, Raffaele E et al (2003) Fire history and vegetation changes in northern Patagonia, Argentina. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, pp 265–295

    Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39(3):505–522

    PubMed  Google Scholar 

  • Vicenzi N, Corbalán V, Miles D et al (2017) Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol Conserv 206:151–160

    Google Scholar 

  • Wang G, Dillon ME (2014) Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nat Clim Chang 4:988–992

    Google Scholar 

  • Warner DA, Shine R (2008) Maternal nest-site choice in a lizard with temperature-dependent sex determination. Anim Behav 75(3):861–870

    Google Scholar 

  • Webb JK, Shine R, Christian KA (2006) The adaptive significance of reptilian viviparity in the tropics: testing the maternal manipulation hypothesis. Evolution 60(1):115–122

    PubMed  Google Scholar 

  • Wild KH, Gienger CM (2018) Fire-disturbed landscapes induce phenotypic plasticity in lizard locomotor performance. J Zool. https://doi.org/10.1111/jzo.12545

  • Williams SE, Shoo LP, Isaac JL et al (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6:e325

    PubMed Central  Google Scholar 

  • Wilson RS, Franklin CE (2000) Inability of adult Limnodynastes peronii (Amphibia: Anura) to thermally acclimate locomotor performance. Comp Biochem Physiol A Mol Integr Physiol 127:21–28

    CAS  PubMed  Google Scholar 

  • Wilson TM, Cole JW, Cronin SJ et al (2011a) Impacts on agriculture following the 1991 eruption of Vulcan Hudson, Patagonia: lessons for recovery. Nat Hazards 57:185–212

    Google Scholar 

  • Wilson TM, Cole JW, Stewart C et al (2011b) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239

    Google Scholar 

  • Winkler DW, Dunn PO, McCulloch CE (2002) Predicting the effects of climate change on avian life-history traits. Proc Natl Acad Sci U S A 99:13595–13599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamora-Camacho FJ, Reguera S, Rubiño-Hispán MV et al (2014) Eliciting an immune response reduces sprint speed in a lizard. Behav Ecol 26:115–120

    Google Scholar 

  • Zimmerman LM, Vogel LA, Bowden RM (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213:661–671

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John D. Krenz for reviewing the manuscript. We also thank Jorgelina Boretto, Alejandro Scolaro, Fausto Méndez de la Cruz, Donald Miles, Rafael Lara Resendiz, and Manuela Martínez for their support during the various studies reviewed in this chapter. We also thank the Wild Fauna Direction of Rio Negro, Chubut, and Santa Cruz Government for the permits to perform the fieldwork. This work was supported by funding from National Geographic (9154-12), PIP 11220120100676, PICT2013-1139, PICT2014-3100, PICT-2017-0553, PICT-2017-0905, PICT-2017-0586 PRÉSTAMO BID, and “Quantifying Climate-forced Extinction Risks for Lizards, Amphibians, and Plants” of NSF (EF-1241848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora R. Ibargüengoytía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibargüengoytía, N.R. et al. (2020). Effects of Acute and Chronic Environmental Disturbances on Lizards of Patagonia. In: Morando, M., Avila, L.J. (eds) Lizards of Patagonia. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-030-42752-8_13

Download citation

Publish with us

Policies and ethics