Skip to main content

Feature Learning to Automatically Assess Radiographic Knee Osteoarthritis Severity

Part of the Intelligent Systems Reference Library book series (ISRL,volume 186)

Abstract

Feature learning refers to techniques that learn to transform raw data input into an effective representation for further higher-level processing in many computer vision tasks. This chapter presents the investigations and the results of feature learning using convolutional neural networks to automatically assess knee osteoarthritis (OA) severity and the associated clinical and diagnostic features of knee OA from radiographs (X-ray images). Also, this chapter demonstrates that feature learning in a supervised manner is more effective than using conventional handcrafted features for automatic detection of knee joints and fine-grained knee OA image classification. In the general machine learning approach to automatically assess knee OA severity, the first step is to localize the region of interest that is to detect and extract the knee joint regions from the radiographs, and the next step is to classify the localized knee joints based on a radiographic classification scheme such as Kellgren and Lawrence grades. First, the existing approaches for detecting (or localizing) the knee joint regions based on handcrafted features are reviewed and outlined in this chapter. Next, three new approaches are introduced: (1) to automatically detect the knee joint region using a fully convolutional network, (2) to automatically assess the radiographic knee OA using CNNs trained from scratch for classification and regression of knee joint images to predict KL grades in ordinal and continuous scales, and (3) to quantify the knee OA severity optimizing a weighted ratio of two loss functions: categorical cross entropy and mean-squared error using multi-objective convolutional learning. The results from these methods show progressive improvement in the overall quantification of the knee OA severity. Two public datasets: the OAI and the MOST are used to evaluate the approaches with promising results that outperform existing approaches. In summary, this work primarily contributes to the field of automated methods for localization (automatic detection) and quantification (image classification) of radiographic knee OA.

Keywords

  • Feature learning
  • Handcrafted features
  • Convolutional neural networks
  • Kellgren and Lawrence grades
  • Automatic detection
  • Classification
  • Regression
  • Multi-objective convolutional learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-42750-4_2
  • Chapter length: 85 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-42750-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18
Fig. 2.19
Fig. 2.20
Fig. 2.21
Fig. 2.22
Fig. 2.23
Fig. 2.24
Fig. 2.25
Fig. 2.26
Fig. 2.27
Fig. 2.28
Fig. 2.29
Fig. 2.30
Fig. 2.31
Fig. 2.32
Fig. 2.33
Fig. 2.34
Fig. 2.35
Fig. 2.36
Fig. 2.37
Fig. 2.38
Fig. 2.39
Fig. 2.40
Fig. 2.41
Fig. 2.42
Fig. 2.43
Fig. 2.44
Fig. 2.45
Fig. 2.46
Fig. 2.47
Fig. 2.48
Fig. 2.49
Fig. 2.50
Fig. 2.51
Fig. 2.52

Notes

  1. 1.

    Weighted Neighbor Distance using Compound Hierarchy of Algorithms Representing Morphology.

  2. 2.

    ImageNet Large Scale Visual Recognition Challenge.

  3. 3.

    Osteoarthritis Initiative.

  4. 4.

    Multicenter Osteoarthritis Study.

  5. 5.

    Osteoarthritis Research Society International.

  6. 6.

    Western Ontario and McMaster Universities Osteoarthritis Index.

  7. 7.

    Fisher score is one of the widely used methods for determining the most relevant features for classification.

  8. 8.

    https://statistics.laerd.com/spss-tutorials/ordinal-regression-using-spss-statistics.php.

References

  1. Shamir, L., Ling, S.M., Scott Jr., W.W., Bos, A., Orlov, N., Macura, T.J., Eckley, D.M., Ferrucci, L., Goldberg, I.G.: Knee X-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 56(2) (2009)

    Google Scholar 

  2. Thomson, J., ONeill, T., Felson, D., Cootes, T.: Automated shape and texture analysis for detection of osteoarthritis from radiographs of the knee. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 127–134. Springer (2015)

    Google Scholar 

  3. Shamir, L., Ling, S.M., Scott, W., Hochberg, M., Ferrucci, L., Goldberg, I.G.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr. Cartil. 17(10), 1307–1312 (2009)

    CrossRef  Google Scholar 

  4. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.G.: WNDCHARM—an open source utility for biological image analysis. Source Code Biol. Med. 3(1), 13 (2008)

    CrossRef  Google Scholar 

  5. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: WND-CHARM: multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29(11), 1684–1693 (2008)

    CrossRef  Google Scholar 

  6. Oka, H., Muraki, S., Akune, T., Mabuchi, A., Suzuki, T., Yoshida, H., Yamamoto, S., Nakamura, K., Yoshimura, N., Kawaguchi, H.: Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthr. Cartil. 16(11), 1300–1306 (2008)

    CrossRef  Google Scholar 

  7. Park, H.J., Kim, S.S., Lee, S.Y., Park, N.H., Park, J.Y., Choi, Y.J., Jeon, H.J.: A practical MRI grading system for osteoarthritis of the knee: association with Kellgren-Lawrence radiographic scores. Eur. J. Radiol. 82(1), 112–117 (2013)

    CrossRef  Google Scholar 

  8. Lee, H.: Unsupervised feature learning via sparse hierarchical representations. Ph.D. thesis, Stanford University (2010)

    Google Scholar 

  9. Le, Q.V.: Scalable feature learning. Ph.D. thesis, Stanford University (2013)

    Google Scholar 

  10. Yang, S.: Feature engineering in fine-grained image classification. Ph.D. thesis, University of Washington (2013)

    Google Scholar 

  11. Donoghue, C.R.: Analysis of MRI for knee osteoarthritis using machine learning. Ph.D. thesis, Imperial College London (2013)

    Google Scholar 

  12. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A., van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Osteoarthr. Cartil. 42(1), 60–88 (2017)

    Google Scholar 

  13. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. (0) (2017)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    CrossRef  Google Scholar 

  16. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International Conference on Medical Image Computing and Computer-assisted Intervention, 246–253. Springer (2013)

    Google Scholar 

  17. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    CrossRef  Google Scholar 

  18. Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)

    CrossRef  Google Scholar 

  19. Roth, H.R., Farag, A., Lu, L., Turkbey, E.B., Summers, R.M.: Deep convolutional networks for pancreas segmentation in CT imaging. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp. 94131G–94131G (2015)

    Google Scholar 

  20. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  21. Marijnissen, A.C., Vincken, K.L., Vos, P.A., Saris, D., Viergever, M., Bijlsma, J., Bartels, L., Lafeber, F.: Knee images digital analysis (kida): a novel method to quantify individual radiographic features of knee osteoarthritis in detail. Osteoarthr. Cartil. 16(2), 234–243 (2008)

    CrossRef  Google Scholar 

  22. Felson, D.T., McAlindon, T.E., Anderson, J.J., Weissman, B.W., Aliabadi, P., Evans, S., Levy, D., LaValley, M.P.: Defining radiographic osteoarthritis for the whole knee. Osteoarthr. Cartil. 5(4), 241–250 (1997)

    CrossRef  Google Scholar 

  23. Braun, H.J., Gold, G.E.: Diagnosis of osteoarthritis: imaging. Bone 51(2), 278–288 (2012)

    CrossRef  Google Scholar 

  24. Emrani, P.S., Katz, J.N., Kessler, C.L., Reichmann, W.M., Wright, E.A., McAlindon, T.E., Losina, E.: Joint space narrowing and kellgren-lawrence progression in knee osteoarthritis: an analytic literature synthesis. Osteoarthr. Cartil. 16(8), 873–882 (2008)

    CrossRef  Google Scholar 

  25. Hart, D., Spector, T.: Kellgren & Lawrence grade 1 osteophytes in the kneedoubtful or definite? Osteoarthr. Cartil. 11(2), 149–150 (2003)

    CrossRef  Google Scholar 

  26. Shaikh, H., Panbude, J., Joshi, A.: Image segmentation techniques and its applications for knee joints: a survey. IOSR J. Electron. Commun. Eng. (IOSR-JECE) 9(5), 23–28 (2014)

    Google Scholar 

  27. Sun, Y., Teo, E., Zhang, Q.: Discussions of knee joint segmentation. In: International Conference on Biomedical and Pharmaceutical Engineering, 2006. ICBPE 2006. IEEE (2006)

    Google Scholar 

  28. Gornale, S.S., Patravali, P.U., Manza, R.R.: Detection of osteoarthritis using knee x-ray image analyses: a machine vision based approach. Int. J. Comput. Appl. 145(1) (2016)

    Google Scholar 

  29. Tiulpin, A., Thevenot, J., Rahtu, E., Saarakkala, S.: A novel method for automatic localization of joint area on knee plain radiographs. In: Scandinavian Conference on Image Analysis, pp. 290–301. Springer (2017)

    Google Scholar 

  30. Stammberger, T., Eckstein, F., Michaelis, M., Englmeier, K.H., Reiser, M.: Interobserver reproducibility of quantitative cartilage measurements: comparison of b-spline snakes and manual segmentation. Magn. Reson. Imaging 17(7), 1033–1042 (1999)

    CrossRef  Google Scholar 

  31. Cohen, Z.A., Mccarthy, D.M., Kwak, S.D., Legrand, P., Fogarasi, F., Ciaccio, E.J., Ateshian, G.A.: Knee cartilage topography, thickness, and contact areas from mri: in-vitro calibration and in-vivo measurements. Osteoarthr. Cartil. 7(1), 95–109 (1999)

    CrossRef  Google Scholar 

  32. Hirvasniemi, J., Thevenot, J., Immonen, V., Liikavainio, T., Pulkkinen, P., Jämsä, T., Arokoski, J., Saarakkala, S.: Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis. Osteoarthr. Cartil. 22(10), 1724–1731 (2014)

    CrossRef  Google Scholar 

  33. Woloszynski, T., Podsiadlo, P., Stachowiak, G., Kurzynski, M.: A signature dissimilarity measure for trabecular bone texture in knee radiographs. Med. Phys. 37(5), 2030–2042 (2010)

    CrossRef  Google Scholar 

  34. Zhao, F., Xie, X.: An overview of interactive medical image segmentation. Ann. BMVA 2013(7), 1–22 (2013)

    Google Scholar 

  35. Pirnog, C.D.: Articular cartilage segmentation and tracking in sequential MR images of the knee. Ph.D. thesis, ETH Zurich (2005)

    Google Scholar 

  36. Duryea, J., Li, J., Peterfy, C., Gordon, C., Genant, H.: Trainable rule-based algorithm for the measurement of joint space width in digital radiographic images of the knee. Med. Phys. 27(3), 580–591 (2000)

    CrossRef  Google Scholar 

  37. Podsiadlo, P., Wolski, M., Stachowiak, G.: Automated selection of trabecular bone regions in knee radiographs. Med. Phys. 35(5), 1870–1883 (2008)

    CrossRef  Google Scholar 

  38. Anifah, L., Purnama, I.K.E., Hariadi, M., Purnomo, M.H.: Automatic segmentation of impaired joint space area for osteoarthritis knee on x-ray image using gabor filter based morphology process. IPTEK J. Technol. Sci. 22(3) (2011)

    Google Scholar 

  39. Lee, H.C., Lee, J.S., Lin, M.C.J., Wu, C.H., Sun, Y.N.: Automatic assessment of knee osteoarthritis parameters from two-dimensional x-ray image. In: First International Conference on Innovative Computing, Information and Control, 2006. ICICIC’06, vol. 2, pp. 673–676. IEEE (2006)

    Google Scholar 

  40. Subramoniam, M., Rajini, V.: Local binary pattern approach to the classification of osteoarthritis in knee x-ray images. Asian J. Sci. Res. 6(4), 805 (2013)

    CrossRef  Google Scholar 

  41. Subramoniam, B., et al.: A non-invasive computer aided diagnosis of osteoarthritis from digital x-ray images. Biomed. Res. (2015)

    Google Scholar 

  42. Deokar, D.D., Patil, C.G.: Effective feature extraction based automatic knee osteoarthritis detection and classification using neural network. Int. J. Eng. Tech. 1(3) (2015)

    Google Scholar 

  43. Yoo, T.K., Kim, D.W., Choi, S.B., Park, J.S.: Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross-sectional study. PLoS One 11(2), e0148724 (2016)

    CrossRef  Google Scholar 

  44. Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1), 1727 (2018)

    CrossRef  Google Scholar 

  45. Antony, J., McGuinness, K., O’Connor, N.E., Moran, K.: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1195–1200. IEEE (2016)

    Google Scholar 

  46. Sobel, I.: An isotropic 3\(\times \) 3 image gradient operator. In: Machine Vision for Three-dimensional Sciences (1990)

    Google Scholar 

  47. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 886–893. CVPR 2005. IEEE (2005)

    Google Scholar 

  48. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  49. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  50. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data. arXiv:1701.03056 (2017)

  51. Christ, P.F., Ettlinger, F., Grün, F., Elshaera, M.E.A., Lipkova, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., et al.: Automatic liver and tumor segmentation of ct and mri volumes using cascaded fully convolutional neural networks. arXiv:1702.05970 (2017)

  52. Li, F.F., Karpathy, A., Johnson, J.: CS231n: convolutional neural networks for visual recognition. http://cs231n.github.io/convolutional-networks/ (2016)

  53. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  54. Kilian, J.: Simple image analysis by moments. OpenCV library documentation (2001)

    Google Scholar 

  55. Bressan, M., Dance, C.R., Poirier, H., Arregui, D.: Local contrast enhancement. In: Color Imaging: Processing, Hardcopy, and Applications, p. 64930Y (2007)

    Google Scholar 

  56. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process 39(3), 355–368 (1987)

    CrossRef  Google Scholar 

  57. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2154 (2014)

    Google Scholar 

  58. Antony, J., McGuinness, K., Moran, K., OConnor, N.E.: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 376–390. Springer (2017)

    Google Scholar 

  59. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    MATH  CrossRef  Google Scholar 

  60. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.: Wnd-charm: multi-purpose image classifier. Astrophysics Source Code Library (2013)

    Google Scholar 

  61. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)

    CrossRef  Google Scholar 

  62. Haralick, R.M., Shanmugam, K., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    CrossRef  Google Scholar 

  63. Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on gabor filters. IEEE Trans. Image Proc. 11(10), 1160–1167 (2002)

    MathSciNet  CrossRef  Google Scholar 

  64. Teague, M.R.: Image analysis via the general theory of moments. JOSA 70(8), 920–930 (1980)

    MathSciNet  CrossRef  Google Scholar 

  65. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of British Machine Vision Conference (2014)

    Google Scholar 

  66. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  67. Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)

    Google Scholar 

  68. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    MathSciNet  CrossRef  Google Scholar 

  69. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  70. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  71. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  72. Miao, S., Wang, Z.J., Zheng, Y., Liao, R.: Real-time 2d/3d registration via CNN regression. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1430–1434. IEEE (2016)

    Google Scholar 

  73. Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R.: Deep learning for automated skeletal bone age assessment in x-ray images. Med. Image Anal. 36, 41–51 (2017)

    CrossRef  Google Scholar 

  74. Roth, H.R., Wang, Y., Yao, J., Lu, L., Burns, J.E., Summers, R.M.: Deep convolutional networks for automated detection of posterior-element fractures on spine CT. In: Proceedings Volume 9785, Medical Imaging 2016: Computer-Aided Diagnosis, SPIE Medical Imaging (2016)

    Google Scholar 

  75. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)

    Google Scholar 

  76. Liu, S., Yang, J., Huang, C., Yang, M.H.: Multi-objective convolutional learning for face labeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3451–3459 (2015)

    Google Scholar 

  77. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, pp. 1799–1807 (2014)

    Google Scholar 

  78. Ranftl, R., Pock, T.: A deep variational model for image segmentation. In: German Conference on Pattern Recognition, pp. 107–118. Springer (2014)

    Google Scholar 

  79. Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Proc. 14(9), 1360–1371 (2005)

    CrossRef  Google Scholar 

  80. Rudd, E.M., Günther, M., Boult, T.E.: Moon: a mixed objective optimization network for the recognition of facial attributes. In: European Conference on Computer Vision, pp. 19–35. Springer (2016)

    Google Scholar 

  81. Schiphof, D., Boers, M., Bierma-Zeinstra, S.M.: Differences in descriptions of kellgren and lawrence grades of knee osteoarthritis. Ann. Rheum. Dis. 67(7), 1034–1036 (2008)

    CrossRef  Google Scholar 

  82. Shamir, L., Felson, D.T., Ferrucci, L., Goldberg, I.G.: Assessment of osteoarthritis initiative-kellgren and lawrence scoring projects quality using computer analysis. J. Musculoskelet. Res. 13(04), 197–201 (2010)

    CrossRef  Google Scholar 

  83. Gutiérrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    CrossRef  Google Scholar 

  84. Pedregosa, F., Bach, F., Gramfort, A.: On the consistency of ordinal regression methods. J. Mach. Learn. Res. 18(55), 1–35 (2017)

    MathSciNet  MATH  Google Scholar 

  85. Beckham, C., Pal, C.: A simple squared-error reformulation for ordinal classification. arXiv:1612.00775 (2016)

  86. Górriz, M., Antony, J., McGuinness, K., Giró-i Nieto, X., OConnor, N.E.: Assessing knee OA severity with CNN attention-based end-to-end architectures. In: International Conference on Medical Imaging with Deep Learning, pp. 197–214 (2019)

    Google Scholar 

  87. Williams, D.A., Farrell, M.J., Cunningham, J., Gracely, R.H., Ambrose, K., Cupps, T., Mohan, N., Clauw, D.J.: Knee pain and radiographic osteoarthritis interact in the prediction of levels of self-reported disability. Arthritis Care Res. 51(4), 558–561 (2004)

    CrossRef  Google Scholar 

  88. Abedin, J., Antony, J., McGuinness, K., Moran, K., OConnor, N.E., Rebholz-Schuhmann, D., Newell, J.: Predicting knee osteoarthritis severity: comparative modeling based on patients data and plain x-ray images. Sci. Rep. 9(1), 5761 (2019)

    Google Scholar 

Download references

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under grant numbers SFI/12/RC/2289 and 15/SIRG/3283.

The OAI is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health.

MOST is comprised of four cooperative grants (Felson—AG18820; Torner—AG18832; Lewis—AG18947; and Nevitt—AG19069) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by MOST study investigators. This manuscript was prepared using MOST data and does not necessarily reflect the opinions or views of MOST investigators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Antony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Antony, J., McGuinness, K., Moran, K., O’Connor, N.E. (2020). Feature Learning to Automatically Assess Radiographic Knee Osteoarthritis Severity. In: Nanni, L., Brahnam, S., Brattin, R., Ghidoni, S., Jain, L. (eds) Deep Learners and Deep Learner Descriptors for Medical Applications. Intelligent Systems Reference Library, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-030-42750-4_2

Download citation