Skip to main content

Dual Channel Speech Enhancement Based on Fractional Fourier Transform

  • Chapter
  • First Online:
Fractional Fourier Transform Techniques for Speech Enhancement

Part of the book series: SpringerBriefs in Speech Technology ((BRIEFSSPEECHTECH))

Abstract

This chapter provides a detailed implementation of speech enhancement algorithm using fractional Fourier transform technique. Dual channel adaptive noise cancellation setup has been considered for the present study. Two adaptive algorithms, viz. LMS and NLMS algorithms, are implemented in FrFT domain. FrFT-based adaptive filters overcome the difficulties of adaptation in time-varying signal environment by transforming the signals into fractional Fourier domain, where signals vary slowly. The advantage of using the fractional Fourier domain is that the non-bandlimited signal in Fourier domain may be bandlimited in the fractional Fourier domain for a certain value of angle. In this chapter, special attention has been given to the concepts of continuous fractional Fourier transform (CFrFT) technique and its digital implementation. As preliminaries, the basics of ANC and adaptive filters are described in Sect. 3.1. Adaptive filters are described in Sect. 3.2. Adaptive filters in FrFT domain and the application of FrFT-based adaptive filters to speech enhancement are discussed in Sect. 3.3. The mathematical formulae and the background concepts of objective measures used for the evaluation of algorithms have also been presented. Results, analysis, and the conclusions of this chapter are given in Sects. 3.4 and 3.5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida, L. B. (1994). The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 42(11), 3084–3091.

    Article  Google Scholar 

  • ANSI. (1997). Methods for calculation of the speech intelligibility index. Technical report S3.5-1997. New York: American National Standards Institute.

    Google Scholar 

  • Douglas, S. C. (1994). A family of normalized LMS algorithms. IEEE Signal Processing Letters, 1(3), 49.

    Article  Google Scholar 

  • Hayes, M. H. (2000). Statistical digital signal processing and modeling. New York: Wiley. ISBN: 0-471-59431-8.

    Google Scholar 

  • Haykin, S. (2001). Adaptive filter theory (4th ed.). Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  • Haykin, S. S., & Widrow, B. (Eds.). (2003). Least-mean-square adaptive filters. Hoboken: Wiley.

    Google Scholar 

  • Kutay, M. A., Ozaktas, H. M., Onural, L., & Arıkan, O. (1995). Optimal filtering in fractional Fourier domains. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing (pp. 937–940).

    Google Scholar 

  • Lohmann, A. W. (1993). Image rotation, Wigner rotation and the fractional Fourier transform. Journal of the Optical Society of America A, 10, 2181–2186.

    Article  Google Scholar 

  • Ma, J., Loizou, P. C., & Loss, S. N. R. (2011). A new objective measure for predicting speech intelligibility of noise-suppressed speech. Speech Communication, 53(3), 340–354.

    Article  Google Scholar 

  • McBride, A. C., & Kerr, F. H. (1987). On namias’ fractional Fourier transforms. IMA Journal of Applied Mathematics, 39, 159–175.

    Article  MathSciNet  Google Scholar 

  • Mendlovic, D., & Ozaktas, H. M. (1993). Fractional Fourier transformations and their optical implementation: Part I. Journal of the Optical Society of America A, 10, 1875–1881.

    Article  Google Scholar 

  • Mendlovic, D., Ozaktas, H. M., & Lohmann, A. W. (1993). Fourier transforms of fractional order and their optical interpretation. In Proceedings of the Topical Meeting on Optical Computing, OSA Technical Digest Series, Washington, DC (pp. 127–130).

    Google Scholar 

  • Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 25, 241–265.

    Article  MathSciNet  Google Scholar 

  • Ozaktas, H. M., & Mendlovic, D. (1993a). Fourier transforms of fractional order and their optical interpretation. Optics Communication, 101, 163–169.

    Article  Google Scholar 

  • Ozaktas, H. M., & Mendlovic, D. (1993b). Fractional Fourier transformations and their optical implementation: Part II. Journal of the Optical Society of America A, 10, 2522–2531.

    Article  Google Scholar 

  • Ozaktas, H. M., & Mendlovic, D. (1995). Fractional Fourier optics. Journal of the Optical Society of America A, 12, 743–751.

    Article  Google Scholar 

  • Ozaktas, H. M., Zalevsky, Z., & Kutay, M. A. (2001). The fractional Fourier transform. Chichester: Wiley.

    Book  Google Scholar 

  • Pei, S. C., & Ding, J. J. (2003). Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. Journal of the Optical Society of America A, 20(3), 522–532.

    Article  MathSciNet  Google Scholar 

  • Pei, S. C., & Ding, J. J. (2007a). Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. IEEE Transactions on Signal Processing, 55(10), 4839–4850.

    Article  MathSciNet  Google Scholar 

  • Pei, S. C., & Ding, J. J. (2007b). Eigen functions of Fourier and fractional Fourier transforms with complex offsets and parameters. IEEE Transactions on Signal Processing, 54(7), 1599–1611.

    MATH  Google Scholar 

  • Pei, S. C., Hsue, W. L., & Ding, J. J. (2006). Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices. IEEE Transactions on Signal Processing, 54(10), 3815–3828.

    Article  Google Scholar 

  • Pei, S. C., & Yeh, M. H. (1997). Improved discrete fractional Fourier transform. Optics Letters, 22, 1047–1049.

    Article  Google Scholar 

  • Santhanam, B., & McClellan, J. H. (1995). The DRFT—A rotation in time frequency space. In Proceedings of the ICASSP (pp. 921–924).

    Google Scholar 

  • Treichler, J. R., Johnson, C. R., & Larimore, M. G. (1987). Theory and design of adaptive filters. New York: Wiley.

    MATH  Google Scholar 

  • Widrow, B., & Stearns, S. (1985). Adaptive signal processing. Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kunche, P., Manikanthababu, N. (2020). Dual Channel Speech Enhancement Based on Fractional Fourier Transform. In: Fractional Fourier Transform Techniques for Speech Enhancement. SpringerBriefs in Speech Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-42746-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42746-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42745-0

  • Online ISBN: 978-3-030-42746-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics