Skip to main content

Using Monte Carlo Particle Methods to Estimate and Quantify Uncertainty in Periodic Parameters (Research)

  • Chapter
  • First Online:
Advances in Mathematical Sciences

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 21))

Abstract

Estimating and quantifying uncertainty in system parameters remains a big challenge in applied and computational mathematics. A subset of these problems includes estimating periodic parameters that have unknown dynamics. Along with their time series, the period of these parameters may also be unknown and need to be estimated. The aim of this paper is to address the periodic parameter estimation problem, with particular focus on exploring the associated uncertainty, using Monte Carlo particle methods, such as the ensemble Kalman filter. Both parameter tracking and piecewise function approximations of periodic parameters are considered, highlighting aspects of parameter uncertainty in each approach when considering factors such as the frequency of available data and the number of piecewise segments used in the approximation. Estimation of the period of the periodic parameters and related uncertainty is also analyzed in the piecewise formulation. The pros and cons of each approach are discussed relative to a numerical example estimating the external voltage parameter in the FitzHugh–Nagumo system for modeling the spiking dynamics of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P.: Seasonality and the dynamics of infectious diseases. Ecology Letters 9, 467–484 (2006)

    Article  Google Scholar 

  2. Anderson, J.L.: An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129, 2884–2903 (2001)

    Article  Google Scholar 

  3. Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Statistics and Computing 18(4), 343–373 (2008)

    Article  MathSciNet  Google Scholar 

  4. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Statistics Surveys 4, 40–79 (2010)

    Article  MathSciNet  Google Scholar 

  5. Arnold, A.: Exploring the effects of uncertainty in parameter tracking estimates for the time-varying external voltage parameter in the FitzHugh-Nagumo model. In: P. Nithiarasu, M. Ohta, M. Oshima (eds.) 6th International Conference on Computational and Mathematical Biomedical Engineering – CMBE2019, pp. 512–515 (2019)

    Google Scholar 

  6. Arnold, A., Calvetti, D., Somersalo, E.: Linear multistep methods, particle filtering and sequential Monte Carlo. Inverse Problems 29(8), 085007 (2013)

    Article  MathSciNet  Google Scholar 

  7. Arnold, A., Calvetti, D., Somersalo, E.: Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter. Inverse Problems 30(10), 105008 (2014)

    Article  MathSciNet  Google Scholar 

  8. Arnold, A., Lloyd, A.L.: An approach to periodic, time-varying parameter estimation using nonlinear filtering. Inverse Problems 34(10), 105005 (2018)

    Article  MathSciNet  Google Scholar 

  9. Aron, J., Schwartz, I.: Seasonality and period-doubling bifurcations in an epidemic model. J Theor Biol 110, 665–679 (1984)

    Article  MathSciNet  Google Scholar 

  10. Berry, T., Sauer, T.: Adaptive ensemble Kalman filtering of non-linear systems. Tellus A 65, 20331 (2013)

    Article  Google Scholar 

  11. Burgers, G., van Leeuwen, P., Evensen, G.: Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6), 1719–1724 (1998)

    Article  Google Scholar 

  12. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5), 10143–10162 (1994)

    Article  Google Scholar 

  13. Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst Mag 29(3), 83–104 (2009)

    Article  MathSciNet  Google Scholar 

  14. Fearnhead, P., Kunsch, H.R.: Particle filters and data assimilation. Annual Review of Statistics and Its Application 5, 421–449 (2018)

    Article  MathSciNet  Google Scholar 

  15. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1, 445–466 (1961)

    Article  Google Scholar 

  16. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings-F 140(2), 107–113 (1993)

    Google Scholar 

  17. Grassly, N., Fraser, C.: Seasonal infectious disease epidemiology. Proc R Soc B 273, 2541–2550 (2006)

    Article  Google Scholar 

  18. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: Efficient adaptive MCMC. Statistics and Computing 16, 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  19. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7, 223–242 (2001)

    Article  MathSciNet  Google Scholar 

  20. Hamilton, F., Berry, T., Peixoto, N., Sauer, T.: Real-time tracking of neuronal network structure using data assimilation. Physical Review E 88, 052715 (2013)

    Article  Google Scholar 

  21. Harlim, J., Majda, A.J.: Catastrophic filter divergence in filtering nonlinear dissipative systems. Commun Math Sci 8(27–43) (2010)

    Google Scholar 

  22. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117, 500–544 (1952)

    Article  Google Scholar 

  23. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126, 796–811 (1998)

    Article  Google Scholar 

  24. Ionides, E., Breto, C., King, A.: Inference for nonlinear dynamical systems. PNAS 103(49), 18438–18443 (2006)

    Article  Google Scholar 

  25. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2 edn. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  26. Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J., Chopin, N.: On particle methods for parameter estimation in state-space models. Statistical Science 30(3), 328–351 (2015)

    Article  MathSciNet  Google Scholar 

  27. Kitagawa, G.: A self-organizing state-space model. Journal of the American Statistical Association 93(443), 1203–1215 (1998)

    Google Scholar 

  28. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  29. Liu, J., West, M.: Combined parameter and state estimation in simulation-based filtering. In: A. Doucet, N. de Freitas, N. Gordon (eds.) Sequential Monte Carlo Methods in Practice, pp. 197–223. Springer, New York (2001)

    Chapter  Google Scholar 

  30. Matzuka, B.: Nonlinear filtering methodologies for parameter estimation and uncertainty quantification in noisy, complex biological systems. Ph.D. thesis, North Carolina State University (2014)

    Google Scholar 

  31. Moradkhani, H., Sorooshian, S., Gupta, H., Houser, P.: Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28(2), 135–147 (2005)

    Article  Google Scholar 

  32. Pitt, M., Shephard, N.: Filtering via simulation: auxiliary particle filters. J Amer Statist Assoc 94, 590–599 (1999)

    Article  MathSciNet  Google Scholar 

  33. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6, 187–202 (2009)

    Article  Google Scholar 

  34. Voss, H., Timmer, J., Kurths, J.: Nonlinear dynamical system identification from uncertain and indirect measurements. International Journal of Bifurcation and Chaos 14(6), 1905–1933 (2004)

    Article  MathSciNet  Google Scholar 

  35. Vyshemirsky, V., Girolami, M.A.: Bayesian ranking of biochemical system models. Bioinformatics 24(6), 833–839 (2007)

    Article  Google Scholar 

  36. Wasserman, L.: Bayesian model selection and model averaging. Journal of Mathematical Psychology 44, 92–107 (2000)

    Article  MathSciNet  Google Scholar 

  37. Whitaker, J.S., Hamill, T.M.: Ensemble data assimilation without perturbed observations. Mon Weather Rev 130, 1913–1924 (2002)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Science Foundation under grant number NSF/DMS-1819203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnold, A. (2020). Using Monte Carlo Particle Methods to Estimate and Quantify Uncertainty in Periodic Parameters (Research). In: Acu, B., Danielli, D., Lewicka, M., Pati, A., Saraswathy RV, Teboh-Ewungkem, M. (eds) Advances in Mathematical Sciences. Association for Women in Mathematics Series, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-42687-3_14

Download citation

Publish with us

Policies and ethics