Skip to main content

Early Diagnosis and Targeted Treatment Strategy for Improved Therapeutic Outcomes in Alzheimer’s Disease

  • Chapter
  • First Online:
Book cover Reviews on New Drug Targets in Age-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1260))

Abstract

There have been repeated failures of clinical studies in the development of new efficacious treatments for Alzheimer’s disease. This may be due to the fact that Alzheimer’s disease is a heterogeneous disorder caused by person-to-person differences in genetic background, epigenetic profiles, environmental triggers, or the presence of other diseases. Furthermore, most Alzheimer’s disease patients are diagnosed in the middle to late stages of the illness, when irreversible damage to the brain has already occurred. With this in mind, a strategy is presented involving identification and implementation of biomarker tests for diagnosis during the prodromal or early stages of the disease. In addition, it is proposed that targeting specific components of the amyloid deposition, tau oligomerization and neuroinflammation pathways may lead to improved outcomes in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Alzheimer Report 2016, Improving healthcare for people living with dementia. https://www.alz.co.uk/research/worldalzheimerreport2016sheet.pdf

  2. World Population Forecast (2020–2050). https://www.worldometers.info/world-population/#table-forecast

  3. GBD 2016 Dementia Collaborators, Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F et al (2019) Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1):88–106

    Article  Google Scholar 

  4. El-Hayek YH, Wiley RE, Khoury CP, Daya RP, Ballard C, Evans AR et al (2019) Tip of the iceberg: assessing the global socioeconomic costs of Alzheimer’s disease and related dementias and strategic implications for stakeholders. J Alzheimers Dis 70(2):323–341

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perneczky R (ed) Biomarkers for preclinical Alzheimer’s disease (Neuromethods), 1st edn. Humana Press; Totowa, NJ, USA. 2018 edition (3 April 2018). ISBN-10: 1493976737

    Google Scholar 

  6. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  CAS  PubMed  Google Scholar 

  7. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641

    Article  CAS  PubMed  Google Scholar 

  9. Eichenbaum H (1999) The hippocampus and mechanisms of declarative memory. Behav Brain Res 103(2):123–133

    Article  CAS  PubMed  Google Scholar 

  10. Larson EB, Shadlen MF, Wang L, McCormick WC, Bowen JD, Teri L et al (2004) Survival after initial diagnosis of Alzheimer disease. Ann Intern Med 140(7):501–509

    Article  PubMed  Google Scholar 

  11. Molinuevo JL, Minguillon C, Rami L, Gispert JD (2018) The rationale behind the new Alzheimer’s disease conceptualization: lessons learned during the last decades. J Alzheimers Dis 62(3):1067–1077

    Article  PubMed  PubMed Central  Google Scholar 

  12. Armstrong RA (2019) Risk factors for Alzheimer’s disease. Folia Neuropathol 57(2):87–105

    Article  Google Scholar 

  13. Ford E, Greenslade N, Paudyal P, Bremner S, Smith HE, Banerjee S et al (2018) Predicting dementia from primary care records: a systematic review and meta-analysis. PLoS One 13(3):e0194735. https://doi.org/10.1371/journal.pone.0194735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guest FL (2019) Early detection and treatment of patients with Alzheimer’s disease: future perspectives. Adv Exp Med Biol 1118:295–317

    Article  CAS  PubMed  Google Scholar 

  15. Cummings JL, Tong G, Ballard C (2019) Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimers Dis 67(3):779–794

    Article  PubMed  PubMed Central  Google Scholar 

  16. Doraiswamy PM (2002) Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs 16(12):811–824

    Article  CAS  PubMed  Google Scholar 

  17. Buckley JS, Salpeter SR (2015) A risk-benefit assessment of dementia medications: systematic review of the evidence. Drugs Aging 32(6):453–467

    Article  CAS  PubMed  Google Scholar 

  18. Tolar M, Abushakra S, Sabbagh M (2019) The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement.. pii: S1552-5260(19)35450-0. https://doi.org/10.1016/j.jalz.2019.09.075

  19. Kitching D (2015) Depression in dementia. Aust Prescr 38(6):209–211

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H (2015) Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement 11(6):718–726

    Article  PubMed  Google Scholar 

  21. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goate A (2006) Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis 9(3 Suppl):341–347

    Article  CAS  PubMed  Google Scholar 

  23. Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC et al (1996) The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat Med 2(10):1146–1150

    Article  CAS  PubMed  Google Scholar 

  24. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376(6543):775–778

    Article  CAS  PubMed  Google Scholar 

  25. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870

    Article  CAS  PubMed  Google Scholar 

  26. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  CAS  PubMed  Google Scholar 

  27. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16):1349–1356

    Article  CAS  PubMed  Google Scholar 

  28. Giri M, Zhang M, Lu Y (2016) Genes associated with Alzheimer’s disease: an overview and current status. Clin Interv Aging 11:665–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen L, Jia J (2016) An overview of genome-wide association studies in Alzheimer’s disease. Neurosci Bull 32(2):183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 5:329–352

    Article  CAS  Google Scholar 

  31. Huse JT, Doms RW (1991) Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer’s disease. Mol Neurobiol 22(1–3):81–98

    Google Scholar 

  32. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  33. Kametani F, Hasegawa M (2018) Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 12:25. https://doi.org/10.3389/fnins.2018.00025

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhu K, Wang X, Sun B, Wu J, Lu H, Zhang X et al (2019) Primary age-related tauopathy in human subcortical nuclei. Front Neurosci 13:529. https://doi.org/10.3389/fnins.2019.00529

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246

    Article  CAS  PubMed  Google Scholar 

  36. Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R (2010) Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem 112(6):1353–1367

    Article  PubMed  CAS  Google Scholar 

  37. White CS, Lawrence CB, Brough D, Rivers-Auty J (2017) Inflammasomes as therapeutic targets for Alzheimer’s disease. Brain Pathol 27(2):223–234

    Article  PubMed  Google Scholar 

  38. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552(7685):355–361

    Article  CAS  PubMed  Google Scholar 

  39. Braak H, Zetterberg H, Del Tredici K, Blennow K (2013) Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol 126(5):631–641

    Article  CAS  PubMed  Google Scholar 

  40. Young AL, Oxtoby NP, Daga P, Cash DM, Fox NC, Ourselin S et al (2014) A data-driven model of biomarker changes in sporadic Alzheimer’s disease. Brain 137(Pt 9):2564–2577

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xiong C, Jasielec MS, Weng H, Fagan AM, Benzinger TL, Head D et al (2016) Longitudinal relationships among biomarkers for Alzheimer disease in the Adult Children Study. Neurology 86(16):1499–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alhajraf F, Ness D, Hye A, Strydom A (2019) Plasma amyloid and tau as dementia biomarkers in Down syndrome: systematic review and meta-analyses. Dev Neurobiol 79(7):684–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gutierrez Gomez M, Langois CM et al (2015) Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurol 72(3):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lott IT, Head E (2019) Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol 15(3):135–147

    Article  PubMed  Google Scholar 

  45. Di Domenico F, Tramutola A, Foppoli C, Head E, Perluigi M, Butterfield DA (2018) mTOR in Down syndrome: role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radic Biol Med 114:94–101

    Article  PubMed  CAS  Google Scholar 

  46. Tariot PN, Lopera F, Langbaum JB, Thomas RG, Hendrix S, Alzheimer’s Prevention Initiative (2018) The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease Trial: a study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease, including a placebo-treated noncarrier cohort. Alzheimers Dement (N Y) 4:150–160

    Google Scholar 

  47. Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K et al (2012) An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci 32(28):9677–9689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Josephs K (2017) Current understanding of neurodegenerative diseases associated with the protein tau. Mayo Clin Proc 92(8):1291–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cummings J (2019) The role of biomarkers in Alzheimer’s disease drug development. Adv Exp Med Biol 1118:29–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng J, Wang JX, Du YH, Liu Y, Zhang W, Chen JF et al (2018) Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP3 inflammasome activation in APP/PS1 transgenic mice. CNS Neurosci Ther 24(12):1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ et al (1998) Alzheimer’s disease – synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105:439–461

    Google Scholar 

  52. Wong A, Luth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T et al (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920:32–40

    Article  CAS  PubMed  Google Scholar 

  53. Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Münch G (2016) Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem Int 95:63–74

    Article  CAS  PubMed  Google Scholar 

  54. Figueiredo-Pereira ME, Corwin C, Babich J (2016) Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration. Ann N Y Acad Sci 1363:125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Camargo CHF, Justus FF, Retzlaff G, Blood MRY, Schafranski MD (2015) Action of anti-TNF-α drugs on the progression of Alzheimer’s disease: a case report. Dement Neuropsychol 9(2):196–200

    Article  PubMed  PubMed Central  Google Scholar 

  56. Butchart J, Brook L, Hopkins V, Teeling J, Püntener U, Culliford D et al (2015) Etanercept in Alzheimer disease: a randomized, placebo-controlled, double-blind, phase 2 trial. Neurology 84(21):2161–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mazzanti G, Di Giacomo S (2016) Curcumin and resveratrol in the management of cognitive disorders: what is the clinical evidence? Molecules 21(9). pii: E1243. https://doi.org/10.3390/molecules21091243

  58. Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A et al (2017) Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526(1–2):413–424

    Article  CAS  PubMed  Google Scholar 

  59. Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C (2019) The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: a systematic review of pre-clinical and clinical studies. Brain Res 1725:146476. https://doi.org/10.1016/j.brainres.2019.146476

    Article  CAS  PubMed  Google Scholar 

  60. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  61. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  62. Landau SM, Horng A, Fero A, Jagust WJ (2016) Alzheimer’s Disease Neuroimaging Initiative. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 86(15):1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sevigny J, Suhy J, Chiao P, Chen T, Klein G, Purcell D et al (2016) Amyloid PET screening for enrichment of early-stage Alzheimer disease clinical trials: experience in a phase 1b clinical trial. Alzheimer Dis Assoc Disord 30(1):1–7

    Article  CAS  PubMed  Google Scholar 

  64. Ellendt S, Vobeta B, Kohn N, Wagels L, Goerlich KS, Drexler E et al (2017) Predicting stability of mild cognitive impairment (MCI): findings of a community based sample. Curr Alzheimer Res 14(6):608–619

    Article  CAS  PubMed  Google Scholar 

  65. Bangen KJ, Clark AL, Werhane M, Edmonds EC, Nation DA, Evangelista N et al (2016) Cortical amyloid burden differences across empirically-derived mild cognitive impairment subtypes and interaction with APOE varepsilon4 genotype. J Alzheimers Dis 52:849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jicha GA, Parisi JE, Dickson DW, Johnson K, Cha R, Ivnik RJ et al (2006) Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 63(5):674–681

    Article  PubMed  Google Scholar 

  67. Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313(19):1924–1938

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234

    Article  CAS  PubMed  Google Scholar 

  69. Hansson O, Zetterberg H, Buchhave P, Andreasson U, Londos E, Minthon L et al (2007) Prediction of Alzheimer’s disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 23:316–320

    Article  CAS  PubMed  Google Scholar 

  70. Wiltfang J, Esselmann H, Bibl M, Hull M, Hampel H, Kessler H et al (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem 101:1053–1059

    Article  CAS  PubMed  Google Scholar 

  71. Lewczuk P, Matzen A, Blennow K, Parnetti L, Molinuevo JL, Eusebi P et al (2017) Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis 55:813–822

    Article  CAS  PubMed  Google Scholar 

  72. Dumurgier J, Schraen S, Gabelle A, Vercruysse O, Bombois S, Laplanche JL et al (2015) Cerebrospinal fluid amyloid-β 42/40 ratio in clinical setting of memory centers: a multicentric study. Alzheimers Res Ther 7(1):30. https://doi.org/10.1186/s13195-015-0114-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Roeck EE, Engelborghs S, Dierckx E (2016) Next generation brain health depends on early Alzheimer disease diagnosis: from a timely diagnosis to future population screening. J Am Med Dir Assoc 17(5):452–453

    Article  PubMed  Google Scholar 

  74. Bjerke M, Zetterberg H, Edman Å, Blennow K, Wallin A, Andreasson U (2011) Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis 27(3):665–676

    Article  CAS  PubMed  Google Scholar 

  75. Slaets S, Le Bastard N, Martin JJ, Sleegers K, Van Broeckhoven C, De Deyn PP et al (2013) Cerebrospinal fluid Aβ1-40 improves differential dementia diagnosis in patients with intermediate P-tau181P levels. J Alzheimers Dis 36(4):759–767

    Article  CAS  PubMed  Google Scholar 

  76. Llorens F, Schmitz M, Ferrer I, Zerr I (2016) CSF biomarkers in neurodegenerative and vascular dementias. Prog Neurobiol 138–140:36–53

    Article  PubMed  CAS  Google Scholar 

  77. Blennow K, Zetterberg H (2018) The past and the future of Alzheimer’s disease fluid biomarkers. J Alzheimers Dis 62(3):1125–1140

    Article  PubMed  PubMed Central  Google Scholar 

  78. Soares HD, Chen Y, Sabbagh M, Roher A, Schrijvers E, Breteler M (2009) Identifying early markers of Alzheimer’s disease using quantitative multiplex proteomic immunoassay panels. Ann N Y Acad Sci 1180:56–67

    Article  CAS  PubMed  Google Scholar 

  79. Perneczky R, Guo LH (2016) Plasma proteomics biomarkers in Alzheimer’s disease: latest advances and challenges. Methods Mol Biol 1303:521–529

    Article  PubMed  Google Scholar 

  80. Vogelgsang J, Shahpasand-Kroner H, Vogelgsang R, Streit F, Vukovich R, Wiltfang J (2018) Multiplex immunoassay measurement of amyloid-β42 to amyloid-β40 ratio in plasma discriminates between dementia due to Alzheimer’s disease and dementia not due to Alzheimer’s disease. Exp Brain Res 236(5):1241–1250

    Article  CAS  PubMed  Google Scholar 

  81. Le Bastard N, Aerts L, Leurs J, Blomme W, De Deyn PP, Engelborghs S (2009) No correlation between time-linked plasma and CSF Abeta levels. Neurochem Int 55(8):820–825

    Article  PubMed  CAS  Google Scholar 

  82. Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ et al (2018) Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. pii: S1552-5260(18)30067-0. https://doi.org/10.1016/j.jalz.2018.02.013

  83. Neergaard JS, Dragsbæk K, Christiansen C, Karsdal MA, Brix S, Henriksen K (2018) Two novel blood-based biomarker candidates measuring degradation of tau are associated with dementia: a prospective study. PLoS One 13(4):e0194802. https://doi.org/10.1371/journal.pone.0194802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ouma S, Suenaga M, Bölükbaşı Hatip FF, Hatip-Al-Khatib I, Tsuboi Y et al (2018) Serum vitamin D in patients with mild cognitive impairment and Alzheimer’s disease. Brain Behav 8(3):e00936. https://doi.org/10.1002/brb3.936

    Article  PubMed  PubMed Central  Google Scholar 

  85. Choi HJ, Byun MS, Yi D, Sohn BK, Lee JH, Lee JY et al (2017) Associations of thyroid hormone serum levels with in-vivo Alzheimer’s disease pathologies. Alzheimers Res Ther 9(1):64. https://doi.org/10.1186/s13195-017-0291-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cao X, Zhu M, He Y, Chu W, Du Y, Du H (2018) Increased serum acylated ghrelin levels in patients with mild cognitive impairment. J Alzheimers Dis 61(2):545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM et al (2018) Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med 15(1):e1002482. https://doi.org/10.1371/journal.pmed.1002482

  88. Wei H, Xu Y, Xu W, Zhou Q, Chen Q, Yang M et al (2018) Serum Exosomal miR-223 serves as a potential diagnostic and prognostic biomarker for dementia. Neuroscience 379:167–176

    Article  CAS  PubMed  Google Scholar 

  89. Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC (2018) The serum exosome derived MicroRNA-135a, −193b, and −384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci 31(2):87–89

    Google Scholar 

  90. Wu Y, Xu J, Xu J, Cheng J, Jiao D, Zhou C et al (2017) Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer’s disease. Tohoku J Exp Med 242(2):129–136

    Article  CAS  PubMed  Google Scholar 

  91. Magalhães TNC, Weiler M, Teixeira CVL, Hayata T, Moraes AS, Boldrini VO et al (2017) Systemic inflammation and multimodal biomarkers in amnestic mild cognitive impairment and Alzheimer’s disease. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0795-9

  92. Lai KSP, Liu CS, Rau A, Lanctôt KL, Köhler CA, Pakosh M et al (2017) Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 88(10):876–882

    Article  PubMed  Google Scholar 

  93. Chen A, Oakley AE, Monteiro M, Tuomela K, Allan LM, Mukaetova-Ladinska EB et al (2016) Multiplex analyte assays to characterize different dementias: brain inflammatory cytokines in poststroke and other dementias. Neurobiol Aging 38:56–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mueller A, Bullich S, Barret O, Madonia J, Berndt M, Papin C et al (2019) Tau PET imaging with 18F-PI-2620 in patients with Alzheimer’s disease and healthy controls: a first-in-human study. J Nucl Med. https://doi.org/10.2967/jnumed.119.236224. pii: jnumed.119.236224. [Epub ahead of print]

  95. Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A et al (2019) Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur J Nucl Med Mol Imaging 46(10):2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bullich S, Barret O, Constantinescu C, Sandiego C, Mueller A, Berndt M et al (2019) Evaluation of dosimetry, quantitative methods and test-retest variability of 18F-PI-2620 PET for the assessment of tau deposits in the human brain. J Nucl Med. https://doi.org/10.2967/jnumed.119.236240. pii: jnumed.119.236240. [Epub ahead of print]

  97. Coppola G, Di Renzo A, Ziccardi L, Martelli F, Fadda A, Manni G et al (2015) Optical coherence tomography in Alzheimer’s disease: a meta-analysis. PLoS One 10:e0134750. https://doi.org/10.1371/journal.pone.0134750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ et al (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2(16). https://doi.org/10.1172/jci.insight.93621. pii: 93621. [Epub ahead of print]

  99. Yoon SP, Thompson AC, Polascik BW, Calixte C, Burke JR, Petrella JR et al (2019) Correlation of OCTA and volumetric MRI in mild cognitive impairment and Alzheimer’s disease. Ophthalmic Surg Lasers Imaging Retina 50(11):709–718

    Article  PubMed  Google Scholar 

  100. Kim JI, Kang BH (2019) Decreased retinal thickness in patients with Alzheimer’s disease is correlated with disease severity. PLoS One 14(11):e0224180. https://doi.org/10.1371/journal.pone.0224180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Medina M (2018) An overview on the clinical development of tau-based therapeutics. Int J Mol Sci 19(4). pii: E1160. https://doi.org/10.3390/ijms19041160

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guest, F.L., Rahmoune, H., Guest, P.C. (2020). Early Diagnosis and Targeted Treatment Strategy for Improved Therapeutic Outcomes in Alzheimer’s Disease. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_8

Download citation

Publish with us

Policies and ethics