Skip to main content

The Use of Metformin to Increase the Human Healthspan

Part of the Advances in Experimental Medicine and Biology book series (PMISB,volume 1260)

Abstract

Metformin is a safe, effective and useful drug for glucose management in patients with diabetes. However in recent years, more attention has been paid to the possibility of using metformin as an anti-aging drug. It was shown to significantly increase the lifespan in some model organisms and delay the onset of age-associated declines. The current review summarizes advances in clinical research on the potential role of metformin in the field of lifespan and healthspan extension. Growing amounts of evidence from clinical trials suggest that metformin can effectively reduce the risk of many age-related diseases and conditions, including cardiometabolic disorders, neurodegeneration, chronic inflammation and frailty. Metformin also holds promise as a drug that could be repurposed for chemoprevention or adjuvant therapy for certain types of cancer. Moreover, metformin induces autophagy by activation of AMPK and can thus be potentially used to promote heathspan by hormesis-like mechanisms. Although long-term intake of metformin is associated with low risk of adverse events, well-designed clinical trials are still required to uncover the potential use of this drug as a geroprotector.

Keywords

  • Metformin
  • Healthspan
  • Longevity
  • Off-label prescription
  • Cancer
  • Safety

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Miles JM, Rule AD, Borlaug BA (2014) Use of metformin in diseases of aging. Curr Diab Rep 14(6):490. https://doi.org/10.1007/s11892-014-0490-4

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865

    CrossRef  Google Scholar 

  3. Bailey CJ (2017) Metformin: historical overview. Diabetologia 60(9):1566–1576

    CrossRef  CAS  PubMed  Google Scholar 

  4. Larsen JR, Dima L, Correll CU, Manu P (2018) The pharmacological management of metabolic syndrome. Expert Rev Clin Pharmacol 11:397–410

    CrossRef  CAS  Google Scholar 

  5. Samocha-Bonet D, Debs S, Greenfield JR (2018) Prevention and treatment of type 2 diabetes: a pathophysiological-based approach. Trends Endocrinol Metab 29:370–379

    CrossRef  CAS  PubMed  Google Scholar 

  6. Schlender L, Martinez YV, Adeniji C, Reeves D, Faller B, Sommerauer C et al (2017) Efficacy and safety of metformin in the management of type 2 diabetes mellitus in older adults: a systematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatr 17(Suppl 1):227. https://doi.org/10.1186/s12877-017-0574-5

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Hostalek U, Gwilt M, Hildemann S (2015) Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs 75:1071–1094

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berstein LM (2012) Metformin in obesity, cancer and aging: addressing controversies. Aging (Albany NY) 4:320–329

    CrossRef  CAS  Google Scholar 

  9. Zhou L, Liu H, Wen X, Peng Y, Tian Y, Zhao L (2017) Effects of metformin on blood pressure in nondiabetic patients: a meta-analysis of randomized controlled trials. J Hypertens 35:18–26

    CrossRef  CAS  PubMed  Google Scholar 

  10. Jenkins AJ, Welsh P, Petrie JR (2018) Metformin, lipids and atherosclerosis prevention. Curr Opin Lipidol 29:346–353

    CrossRef  CAS  PubMed  Google Scholar 

  11. Nesti L, Natali A (2017) Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27(8):657–669

    CrossRef  CAS  PubMed  Google Scholar 

  12. Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B (2014) Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis 41(1):61–68

    CrossRef  CAS  PubMed  Google Scholar 

  13. Saisho Y (2015) Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 15:196–205

    CrossRef  CAS  PubMed  Google Scholar 

  14. Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG (2017) Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 60(9):1639–1647

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Safe S, Nair V, Karki K (2018) Metformin-induced anticancer activities: recent insights. Biol Chem 399:321–335

    CrossRef  CAS  PubMed  Google Scholar 

  16. Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G (2014) Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16:1165–1173

    CrossRef  CAS  PubMed  Google Scholar 

  17. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546

    Google Scholar 

  18. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B et al (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20(6):953–966

    CrossRef  CAS  PubMed  Google Scholar 

  19. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Madsen KS, Chi Y, Metzendorf MI, Richter B, Hemmingsen B (2019) Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev (12). https://doi.org/10.1002/14651858.CD008558.pub2

  21. Snaith JR, Holmes-Walker DJ, Greenfield JR (2020) Reducing type 1 diabetes mortality: role for adjunctive therapies? Trends Endocrinol Metab 31:150. https://doi.org/10.1016/j.tem.2019.11.007. [Epub ahead of print]

    CrossRef  CAS  PubMed  Google Scholar 

  22. Beysel S, Unsal IO, Kizilgul M, Caliskan M, Ucan B, Cakal E (2018) The effects of metformin in type 1 diabetes mellitus. BMC Endocr Disord 18(1):1. https://doi.org/10.1186/s12902-017-0228-9

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Livingstone R, Boyle JG, Petrie JR, REMOVAL Study Team (2017) A new perspective on metformin therapy in type 1 diabetes. Diabetologia 60(9):1594–1600

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salpeter SR, Buckley NS, Kahn JA, Salpeter EE et al (2008) Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am J Med 121(2):149–157

    CrossRef  CAS  PubMed  Google Scholar 

  25. Solymar M, Ivic I, Poto L, Hegyi P, Garami A, Hartmann P et al (2018) Metformin induces significant reduction of body weight, total cholesterol and LDL levels in the elderly–a meta-analysis. PLoS One 13(11):e0207947. https://doi.org/10.1371/journal.pone.0207947

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou J, Massey S, Story D, Li L (2018) Metformin: an old drug with new applications. Int J Mol Sci 19(10):2863. https://doi.org/10.3390/ijms19102863

    CrossRef  CAS  PubMed Central  Google Scholar 

  27. van Stee MF, de Graaf AA, Groen AK (2018) Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol 17(1):94. https://doi.org/10.1186/s12933-018-0738-4

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ning HH, Le J, Wang Q, Young CA, Deng B, Gao PX et al (2018) The effects of metformin on simple obesity: a meta-analysis. Endocrine 62:528–534

    CrossRef  CAS  PubMed  Google Scholar 

  29. Hui F, Zhang Y, Ren T, Li X, Zhao M, Zhao Q (2019) Role of metformin in overweight and obese people without diabetes: a systematic review and network meta-analysis. Eur J Clin Pharmacol 75(4):437–450

    CrossRef  PubMed  Google Scholar 

  30. Naderpoor N, Shorakae S, de Courten B, Misso ML, Moran LJ, Teede HJ (2016) Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Hum Reprod Update 21(5):560–574

    CrossRef  CAS  Google Scholar 

  31. Björkhem-Bergman L, Asplund AB, Lindh JD (2011) Metformin for weight reduction in non-diabetic patients on antipsychotic drugs: a systematic review and meta-analysis. J Psychopharmacol 25:299–305

    CrossRef  PubMed  Google Scholar 

  32. Malin SK, Kashyap SR (2014) Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes 21(5):323–329

    CrossRef  CAS  PubMed  Google Scholar 

  33. Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR, Gutgesell RM et al (2019) Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nature Metabol 1(12):1202–1208

    CrossRef  CAS  Google Scholar 

  34. American Diabetes Association (2002) Implications of the United Kingdom prospective diabetes study. Diabetes Care 25(Suppl 1):28–32

    Google Scholar 

  35. Holman RR, Sanjoy KP, Bethel MA, Matthews DR, Neil AW (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    CrossRef  CAS  PubMed  Google Scholar 

  36. Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z (2019) Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol 18:96. https://doi.org/10.1186/s12933-019-0900-7

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang K, Yang W, Dai H, Deng Z (2020) Cardiovascular risk following metformin treatment in patients with type 2 diabetes mellitus: results from meta-analysis. Diabetes Res Clin Pract 160:108001. https://doi.org/10.1016/j.diabres.2020.108001

    CrossRef  PubMed  Google Scholar 

  38. Dziubak A, Wójcicka G, Wojtak A, Bełtowski J (2018) Metabolic effects of metformin in the failing heart. Int J Mol Sci 19(10):2869. https://doi.org/10.3390/ijms19102869

    CrossRef  CAS  PubMed Central  Google Scholar 

  39. Sardu C, Paolisso P, Sacra C, Mauro C, Minicucci F, Portoghese M et al (2019) Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE multicenter prospective study. Diabetes Care 42(10):1946–1955

    CrossRef  PubMed  Google Scholar 

  40. Mohan M, Al-Talabany S, McKinnie A, Mordi IR, Singh JS, Gandy SJ et al (2019) A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J 40(41):3409–3417

    CrossRef  PubMed  PubMed Central  Google Scholar 

  41. de Jager J, Kooy A, Schalkwijk C, van der Kolk J, Lehert P, Bets D et al (2014) Long-term effects of metformin on endothelial function in type 2 diabetes: a randomized controlled trial. J Intern Med 275:59–70

    CrossRef  PubMed  CAS  Google Scholar 

  42. Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA, Tjosvold L (2013) Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure. Systematic review of observational studies involving 34,000 patients. Circ Heart Fail 6:395–402

    CrossRef  CAS  PubMed  Google Scholar 

  43. Tizazu AM, Zin NMS, Olivier C, Suku K, Mok E, Xian CH et al (2019) Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality. Front Physiol 10:572. https://doi.org/10.3389/fphys.2019.00572

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Chen W, Liu X, Ye S (2016) Effects of metformin on blood and urine pro-inflammatory mediators in patients with type 2 diabetes. J Inflamm Res 13(1):34. https://doi.org/10.1186/s12950-016-0142-3

    CrossRef  CAS  Google Scholar 

  45. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C et al (2016) Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 119:652–665

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I (2018) Metformin as an anticancer agent. Trends Pharmacol Sci 39(10):867–878

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kobayashi Y, Banno K, Kunitomi H, Tominaga E, Aoki D (2019) Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J Gynecol Oncol 30(1):e10. https://doi.org/10.3802/jgo.2019.30.e10

    CrossRef  CAS  PubMed  Google Scholar 

  48. Roshan MH, Shing YK, Pace NP (2019) Metformin as an adjuvant in breast cancer treatment. SAGE Open Med 7:2050312119865114. https://doi.org/10.1177/2050312119865114

    CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel L et al (2010) Diabetes and cancer: a consensus report. Diabetes Care 33(7):1674–1685

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP (2015) Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350:g7607. https://doi.org/10.1136/bmj.g7607

    CrossRef  PubMed  Google Scholar 

  51. Mekuria AN, Ayele Y, Tola A, Mishore KM (2019) Monotherapy with metformin versus sulfonylureas and risk of cancer in type 2 diabetic patients: a systematic review and meta-analysis. J Diabetes Res 2019:7676909. https://doi.org/10.1155/2019/7676909

    CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Franciosi M, Lucisano G, Lapice E, Strippoli GFM, Pellegrini F, Nicolucci A (2013) Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One 8:e71583. https://doi.org/10.1371/journal.pone.0071583

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang ZJ, Zheng ZJ, Shi R, Su Q, Jiang Q, Kip KE (2012) Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab 97:2347–2353

    CrossRef  CAS  PubMed  Google Scholar 

  54. Tang YL, Zhu LY, Li Y, Wang J, Zeng XX, Hu KX et al (2017) Metformin use is associated with reduced incidence and improved survival of endometrial cancer: a meta-analysis. Biomed Res Int 2017:5905384. https://doi.org/10.1155/2017/5905384

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meireles CG, Pereira SA, Valadares LP, Rêgo DF, Simeoni LA, Guerra ENS et al (2017) Effects of metformin on endometrial cancer: systematic review and meta-analysis. GynecolOncol 147:167–180

    CAS  Google Scholar 

  56. Sivalingam VN, Kitson S, McVey R et al (2016) Measuring the biological effect of presurgical metformin treatment in endometrial cancer. Br J Cancer 114(3):281–289

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao Y, Sun H, Feng M, Zhao J, Zhao X, Wan Q et al (2018) Metformin is associated with reduced cell proliferation in human endometrial cancer by inhibiting PI3K/AKT/mTOR signaling. Gynecol Endocrinol 34(5):428–432

    Google Scholar 

  58. Hou YC, Hu Q, Huang J, Fang JY, Xiong H (2017) Metformin therapy and the risk of colorectal adenoma in patients with type 2 diabetes: a meta-analysis. Oncotarget 8:8843–8853

    PubMed  Google Scholar 

  59. Meng F, Song L, Wang W (2017) Metformin improves overall survival of colorectal cancer patients with diabetes: a meta-analysis. J Diabetes Res 2017:5063239. https://doi.org/10.1155/2017/5063239

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang ZJ, Yuan J, Bi Y, Wang C, Liu Y (2019) The effect of metformin on biomarkers and survivals for breast cancer- a systematic review and meta-analysis of randomized clinical trials. Pharmacol Res 141:551–555

    CrossRef  CAS  PubMed  Google Scholar 

  61. Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT (2012) Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treat 135:639–646

    CrossRef  CAS  PubMed  Google Scholar 

  62. Xu H, Chen K, Jia X, Tian Y, Dai Y, Li D et al (2015) Metformin use is associated with better survival of breast cancer patients with diabetes: a meta-analysis. Oncologist 20:1236–1244

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dowling RJ, Niraula S, Chang MC, Done SJ, Ennis M, McCready DR et al (2015) Changes in insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res 17(1):32. https://doi.org/10.1186/s13058-015-0540-0

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  64. He K, Hu H, Ye S, Wang H, Cui R, Yi L et al (2019) The effect of metformin therapy on incidence and prognosis in prostate cancer: a systematic review and meta-analysis. Sci Rep 9:2218. https://doi.org/10.1038/s41598-018-38285-w

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feng Z, Zhou X, Liu N, Wang J, Chen X, Xu X (2019) Metformin use and prostate cancer risk: a meta-analysis of cohort studies. Medicine 98(12):e14955. https://doi.org/10.1097/MD.0000000000014955

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP et al (2012) Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomized clinical trials. Diabetologia 55:2593–2603

    Google Scholar 

  67. Lei Y, Yi Y, Liu Y, Liu X, Keller ET, Qian CN et al (2017) Metformin targets multiple signaling pathways in cancer. Chin J Cancer 36:17. https://doi.org/10.1186/s40880-017-0184-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Wilson D, Jackson T, Sapey E, Lord JM (2017) Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev 36:1–10

    CrossRef  PubMed  Google Scholar 

  69. Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC (2017) Nutrition, frailty, and sarcopenia. Aging Clin Exp Res 29:43. https://doi.org/10.1007/s40520-016-0709-0

    CrossRef  PubMed  Google Scholar 

  70. Li G, Thabane L, Papaioannou A, Ioannidis G, Levine MA, Adachi JD (2017) An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet Disord 18(1):46. https://doi.org/10.1186/s12891-017-1403-x

    CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Espinoza SE, Jiwani R, Wang J, Wang CP (2019) Review of interventions for the frailty syndrome and the role of metformin as a potential pharmacologic agent for frailty prevention. Clin Ther 41(3):376–386

    CrossRef  CAS  PubMed  Google Scholar 

  72. Laksmi PW, Setiati S, Tamin TZ (2017) Effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life: a double blind randomized controlled trial among non-diabetic pre-frail elderly patients. Acta Med Indones Apr 49(2):118–127

    Google Scholar 

  73. Sumantri S, Setiati S, Purnamasari D, Dewiasty E (2014) Relationship between metformin and frailty syndrome in elderly people with type 2 diabetes. Acta Med Indones 46:183–188

    PubMed  Google Scholar 

  74. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081

    CrossRef  CAS  PubMed  Google Scholar 

  75. Gore DC, Wolf SE, Sanford A, Herndon DN, Wolfe RR (2005) Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury. Ann Surg 241:334–342

    CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Gao Y, Li Y, Xue J, Jia Y, Hu J (2010) Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 635:231–236

    CrossRef  CAS  PubMed  Google Scholar 

  77. Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L et al (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909

    CrossRef  CAS  PubMed  Google Scholar 

  78. Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS et al (2013) Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract 101:177–186

    CrossRef  CAS  PubMed  Google Scholar 

  79. Ferrari S, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R et al (2018) Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int 29:2585–2596

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  80. Salari-Moghaddam A, Sadeghi O, Keshteli AH, Larijani B, Esmaillzadeh A (2019) Metformin use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int 30:1167–1173

    CrossRef  CAS  PubMed  Google Scholar 

  81. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858

    CrossRef  CAS  PubMed  Google Scholar 

  82. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jabbour S, Ziring B (2011) Advantages of extended-release metformin in patients with type 2 diabetes mellitus. Postgrad Med 123(1):15–23

    CrossRef  PubMed  Google Scholar 

  84. Derosa G, D’Angelo A, Romano D, Maffioli P (2017) Effects of metformin extended release compared to immediate release formula on glycemic control and glycemic variability in patients with type 2 diabetes. Drug Des Devel Ther 11:1481–1488

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aggarwal N, Singla A, Mathieu C, Montanya E, Pfeiffer AFH, Johnsson E et al (2018) Metformin extended-release versus immediate-release: an international, randomized, double-blind, head-to-head trial in pharmacotherapy-naïve patients with type 2 diabetes. Diabetes Obes Metab 20(2):463–467

    CrossRef  CAS  PubMed  Google Scholar 

  86. Florez JC (2011) Does metformin work for everyone? A genome-wide association study for metformin response. Curr Diab Rep 11:467. https://doi.org/10.1007/s11892-011-0220-0

    CrossRef  PubMed  Google Scholar 

  87. van Leeuwen N, Swen JJ, Guchelaar HJ, t Hart LM (2013) The role of pharmacogenetics in drug disposition and response of oral glucose-lowering drugs. Clin Pharmacokinet 52(10):833–854

    CrossRef  CAS  PubMed  Google Scholar 

  88. Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER (2015) Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes 64(5):1786–1793

    CrossRef  CAS  PubMed  Google Scholar 

  89. Dujic T, Causevic A, Bego T, Malenica M, Velija-Asimi Z, Pearson E et al (2016) Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabet Med 33(4):511–514

    CrossRef  CAS  PubMed  Google Scholar 

  90. Salpeter SR, Greyber E, Pasternack GA, Salpeter EE (2010) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 4:CD002967. https://doi.org/10.1002/14651858.CD002967.pub3

    CrossRef  Google Scholar 

  91. Aroda VR, Edelstein SL, Goldberg RB, Knowler WC, Marcovina SM, Orchard TJ et al (2016) Diabetes prevention program research group. Long-term metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study. J Clin Endocrinol Metabol 101:1754–1761

    CrossRef  CAS  Google Scholar 

  92. Alharbi TJ, Tourkmani AM, Abdelhay O, Alkhashan HI, Al-Asmari AK, Bin Rsheed AM et al (2018) The association of metformin use with vitamin B12 deficiency and peripheral neuropathy in Saudi individuals with type 2 diabetes mellitus. PLoS One 13(10):e0204420. https://doi.org/10.1371/journal.pone.0204420

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  93. De Jager J, Kooy A, Lehert P, Wulffelé MG, Van der Kolk J, Bets D et al (2010) Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ 340:c2181. https://doi.org/10.1136/bmj.c2181

    CrossRef  PubMed  PubMed Central  Google Scholar 

  94. Konopka AR, Laurin JL, Schoenberg HM, Reid JJ, Castor WM, Wolff CA et al (2019) Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 18(1):e12880. https://doi.org/10.1111/acel.12880

    CrossRef  CAS  PubMed  Google Scholar 

  95. Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD et al (2019) Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial. Aging Cell 18(6):e13039. https://doi.org/10.1111/acel.13039

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  96. Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5:e8758. https://doi.org/10.1371/journal.pone.0008758

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cochemé HM, Noori T et al (2013) Metformin retards aging in C. elegan Metformin retards aging in C. elegans by s by altering microbial folate and methionine metabolism. Cell 153:228–239

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  98. De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J et al (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A 111(24):E2501–E2509

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wu L, Zhou B, Oshiro-Rapley N, Li M, Paulo JA, Webster CM (2016) An ancient, unified mechanism for metformin growth inhibition in C elegans and cancer. Cell 167:1705–1718

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  100. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7:2769–2773

    CrossRef  CAS  PubMed  Google Scholar 

  101. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192. https://doi.org/10.1038/ncomms3192

    CrossRef  CAS  PubMed  Google Scholar 

  102. Campbell JM, Bellman SM, Stephenson MD, Lisy K (2017) Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev 40:31–44

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministry of Education and Science of Ukraine (#0117 U006426) to OL and Discovery grant from the Natural Sciences and Engineering Research Council of Canada (#6793) to KBS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Lushchak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piskovatska, V., Storey, K.B., Vaiserman, A.M., Lushchak, O. (2020). The Use of Metformin to Increase the Human Healthspan. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_13

Download citation