Skip to main content

Conventional and Novel Rapid Methods for Detection and Enumeration of Microorganisms

  • Chapter
  • First Online:
Food Safety Engineering

Part of the book series: Food Engineering Series ((FSES))

Abstract

Microbiological analysis of food traditionally involves examination of a representative sample for the presence, numbers, and types of microorganisms and/or their products, and is necessary to assess safety, spoilage, quality, suitability, and shelf-life of food. Conventional methods for the detection, isolation, and enumeration of foodborne microorganisms mostly rely on the cultural methods involving growth of microorganisms. Identification and characterization of spoilage or pathogenic microorganisms is based on enrichment-serology involving pre- and selective enrichment, selective and differential plating, confirmation, and strain typing. Conventional methods which are usually simple, reliable, and well-established are often regarded as the “Gold standard”. However, they are labor and material intensive, imprecise, time-consuming, retrospective, and often subjective in nature. During the past 40 years, advances in the areas of immunology, molecular biology, computer science, miniaturization, and automation have resulted in the development of many microbiological methods for rapid detection, enumeration, and characterization of foodborne microorganisms, especially emerging pathogens. These methods include modified conventional methods, microscopy- based methods, immunology-based methods, nucleic acid-based methods, molecular methods, and biosensors, and microarray-based methods. More recently, genomic-based methods for characterization of pathogens have been used by the regulatory agencies for investigating foodborne illness outbreaks and recalls of food contaminated with pathogens such as Salmonella and Listeria. These improved diagnostic technologies reduce the total time needed to detect, isolate, enumerate, identify, and characterize pathogenic microorganisms. While the rapid methods are labor- and time saving and yield accurate results with high degree of sensitivity and specificity, they require specific and often proprietary material, consumables, equipment, software, and trained analysts. In this chapter, the conventional and rapid methods used today in food microbiology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adzitey F, Huda N, Rahmat Ali GR (2013) Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech 3(2):97–107

    PubMed  Google Scholar 

  • Ahamad SN et al (2005) Laboratory diagnosis of leptospirosis. J Postgrad Med 51(3):195–200

    Google Scholar 

  • Almeida C, Azevedo NF, Fernandes RM, Keevil CW, Vieira MJ (2010) Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl Environ Microbiol 76:4476–4485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelidis AS, Tirodimos I, Bobos M, Kalamaki MS, Papageorgiou DK, Arvanitidou M (2011) Detection of Helicobacter pylori in raw bovine milk by fluorescence in situ hybridization (FISH). Int J Food Microbiol 151:252–256

    CAS  PubMed  Google Scholar 

  • Anvarian AHP, Smith MP, Overton TW (2018) Use of flow cytometry and total viable count to determine the effects of orange juice composition on the physiology of Escherichia coli. Food Sci Nutr 6:1817–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM (2010) Handbook for microbiological media. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Auty M, Duffy G, O’beirne D, McGovern A, Gleeson E, Jordan K (2005) In situ localization of Escherichia coli O157:H7 in food by confocal scanning laser microscopy. J Food Prot 68(3):482–486

    PubMed  Google Scholar 

  • Bailey JS, Cox NA (1992) Universal pre-enrichment broth for the simultaneous detection of Salmonella and Listeria in foods. J Food Prot 55:256–259

    PubMed  Google Scholar 

  • Bailey JS, Cox NA, Thompson JE, Fung DYC (1985) Identification of Enetrobacteriaceae in food with the Automicrobic system. J Food Prot 48:147–149

    CAS  PubMed  Google Scholar 

  • Baker JM, Griffiths MW, Collins-Thompson DL (1992) Bacterial bioluminescence: application in food microbiology. J Food Prot 55:62–70

    CAS  PubMed  Google Scholar 

  • Bancalari E, Bernini V, Bottari B, Neviani E, Gatti M (2016) Application of impedance microbiology for evaluating potential acidifying performance of starter lactic acid bacteria to employ in milk transformation. Front Microbiol 7:1628

    PubMed  PubMed Central  Google Scholar 

  • Barbour WM, Tice G (1997) Genetic and immunologic techniques for detecting foodborne pathogens and toxins. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology, fundamentals and frontiers. American Society for Microbiology, Washington, DC, pp 710–727

    Google Scholar 

  • Bartlett PC, Erskine RJ, Gaston P, Sears PM, Houdijk HW (1996) Enzyme-linked immunosorbent assay and microbiological culture of diagnosis of Staphylococcus aureus intramammary infection in cows. J Food Prot 59:6–10

    PubMed  Google Scholar 

  • Baumstummler A, Chollet R, Meder H, Olivieri F, Rouillon S, Waiche G, Ribault S (2010) Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products. J Appl Microbiol 110:69–79

    PubMed  Google Scholar 

  • Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73(10):3283–3290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betts RP, Blackburn C (2002) Detecting pathogens in foods. In: Blackburn CdW, McClure P (eds) Foodborne pathogens. Hazards, risks analysis and control. Woodhead Publishing, Cambridge, pp 13–52

    Google Scholar 

  • Betts RP, Bankes P, Banks JG (1989) Rapid enumeration of viable microorganisms by staining and direct microscopy. Lett Appl Microbiol 9:199–202

    Google Scholar 

  • Beuchat LR, Copeland F, Curiale MS, Danisavich T, Gangar V, King BW, Lawlis TL, Likin RO, Okwusoa J, Smith CF, Townsend DE (1998) Comparison of the SimPlate total plate count method with Petrifilm, Redigel and conventional pour-plate methods for enumerating aerobic microorganisms in foods. J Food Prot 61:14–18

    CAS  PubMed  Google Scholar 

  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism(AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21:99–114

    CAS  Google Scholar 

  • Blivet D (2000a) Direct (and indirect) conductimetric/impedimetric techniques. Food-borne pathogens. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology, vol 1. Academic Press, London, pp 524–527

    Google Scholar 

  • Blivet D (2000b) Electrical techniques. Introduction. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology, vol 1. Academic Press, London, pp 573–578

    Google Scholar 

  • Blumberg HM, Kiehlbauch JA, Wachsmuth IK (1991) Molecular epidemiology of Yersinia enterocolitica O:3 infections: use of chromosomal DNA restriction fragment length polymorphisms of rRNA genes. J Clin Microbiol 29:2368–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bobbitt JA, Betts RP (1991) Evaluation of Accuprobe culture confirmation test for Listeria monocytogenes. In: Technical memorandum 630. Food and Drink Research Association, Chipping Campden, UK, Campden

    Google Scholar 

  • Bochner BR (1996) The biolog microstation system and general procedures for identifying environmental bacteria and yeast. Ch. 2. In: Olson WP (ed) Automated microbial identification and quantification: technologies for the 2000s. Interphram Press, Buffalo Grove, pp 13–51

    Google Scholar 

  • Bolton FJ, Gibson DM (1994) Automated electrical techniques in microbiological analysis. In: Patel PD (ed) Rapid analysis techniques in food microbiology. Blackie Academic & Professional, London, pp 131–169

    Google Scholar 

  • Bopp CA, Brenner FW, Fields PI, Wells JG, Stockbine NA (eds) (2003) Manual of clinical microbiology, vol 1. ASM Press, Washington, DC

    Google Scholar 

  • Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEADⓇ BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria indrinking water. J Microbiol Methods 37(1999):77–86

    CAS  PubMed  Google Scholar 

  • Brehm-Stecher B, Tortorello ML (2015) Microscopic methods. Ch. 4. In: Salfinger Y, Tortorello ML (eds) Compendium of methods for the microbiological examination of foods, 5th edn. American Public Health Association, Washington, DC, pp 45–65

    Google Scholar 

  • Bridier A, Hammes F, Canette A, Bouchez T, Briandet R (2015) Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 213:2–16

    CAS  PubMed  Google Scholar 

  • Brodie WLP, de Boer E (1992) Evaluation of the MPN Anderson-Baird-Parker, Petrifilm and Fluorcult ECD method for enumerating Escherichia coli in foods of animal origin. Int J Food Microbiol 16:197–208

    Google Scholar 

  • Brosel-Oliu S, Uria N, Abramova N, Bratov A (2015) Impedimetric sensors for bacteria detection. Chapter 9. In: Rinken T (ed) Biosensors – micro and nanoscale applications. IntechOpen, Rijeka

    Google Scholar 

  • Bülte M, Reuter G (1984) Impedance measurement as a rapid method for the determination of the microbial contamination of meat surfaces, testing two different instruments. Int J Food Microbiol 1:113–125

    Google Scholar 

  • Bustin SA, Mueller R (2005) Real time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci (Lond) 109(4):367–379

    Google Scholar 

  • Cady P, Dufour S, Shaw J, Kraeger S (1978a) Electrical impedance measurements: rapid method for detecting and monitoring microorganisms. J Clin Microbiol 7:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cady P, Dufour S, Lawless P, Nunke B, Kraeger S (1978b) Impedimetric screening for bacteriuria. J Clin Microbiol 7:273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calvert RMH, Hopkins C, Reilly MJ, Forsythe SJ (2000) Caged ATP – an internal calibration method for ATP bioluminescence assays. Lett Appl Microbiol 30:223–227

    CAS  PubMed  Google Scholar 

  • Chain VS, Fung DYC (1991) Comparison of Redigel, Petrifilm, spiral plate system, Isogrid and aerobic plate count for determining numbers of aerobic bacteria in selected foods. J Food Prot 54:208–211

    PubMed  Google Scholar 

  • Champiat D, Matas N, Monfort B, Fraass H (2001) Applications of biochemiluminescence to HACCP. Luminescence 16:193–198

    CAS  PubMed  Google Scholar 

  • Chandrapati S, Williams MG (2014) Most probable number (MPN). In: Encyclopedia of food microbiology, vol 3. Academic Press, New York, pp 621–624

    Google Scholar 

  • Chemburu S, Wilkins E, Abdel-Hamid I (2005) Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens Bioelectron 21:491–499

    CAS  PubMed  Google Scholar 

  • Chen J, Griffiths MAW (1996) Luminescent Salmonella strains as real time reporters of growth and recovery from sublethal injury in food. Int J Food Microbiol 31:27–43

    CAS  PubMed  Google Scholar 

  • Chen J, Clarke RC, Griffiths MW (1996) Use of luminescent strains of Salmonella enteritidis to monitor contamination and survival in eggs. J Food Prot 59:915–921

    PubMed  Google Scholar 

  • Clontz L (1996) Substrate utilization and the automated identification of microbes. Ch. 3. In: Olson WP (ed) Automated microbial identification and quantification: technologies for the 2000s. Interphram Press, Buffalo Grove, pp 53–80

    Google Scholar 

  • Comas-Riu J, Rius N (2009) Flow cytometry applications in the food industry. J Ind Microbiol Biotechnol 36(8):999–1011

    CAS  PubMed  Google Scholar 

  • Corbitt AJ, Bennion N, Forsythe SJ (2000) Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry. Lett Appl Microbiol 30:443–447

    CAS  PubMed  Google Scholar 

  • Corry JE, Baird RM, Curtis GDW (2011) Handbook of culture media for food and water microbiology. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Cox NA, Fung DYC, Goldschmidt MC, Bailey JS (1984) Selecting a miniaturized system for identification of enterobacteriaceae. J Food Prot 47:74–77

    CAS  PubMed  Google Scholar 

  • Cox NA, Fung DYC, Bailey JS, Hartman PA, Vasavada PC (1987) Miniaturized kits, immunoassays and DNA hybridization for recognition and identification of foodborne bacteria. Dairy Food Environ Sanit 7:628–631

    Google Scholar 

  • Crowley E, Bird P, Fisher K, Goetz K, Boyle M, Benzinger MJ Jr, Juenger M, Agin J, Goins D, Johnson R (2012) Evaluation of the VITEK 2 gram-negative (GN) microbial identification test card: collaborative study. J AOAC Int 95(3):778–785

    CAS  PubMed  Google Scholar 

  • Curiale MS, Sons T, McJuer D, McAllister JS, Halsey B, Roblee D, Fox TL (1991) Dry rehydratable film for enumeration of total coliforms and Escherichia coli in foods: a collaborative study. J AOAC 74:635–648

    CAS  Google Scholar 

  • Davis R, Mauer LJ (2010) Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, Vol 2. Formatex Research Center, Badajoz, Spain, pp 1582–1594

    Google Scholar 

  • De Vaugelade S, Aime M, Farcette N, Maurel E, Lacour T, Thomas C, Bouchonnet S, Pirnay S (2017) Comparison of the compact dry TC method with the standard method ISO 21149:2006 for determining aerobic colony counts in cosmetic emulsion. Int J Cosmet Sci 39:17–24

    PubMed  Google Scholar 

  • Deshpande SS (1994) Immunodiagnostics in agricultural food and environmental quality control. Food Technol 48:136–141

    Google Scholar 

  • Difco and BBL Manual (2009) Manual of microbiological culture media, 2nd edn. Becton, Dickinson and Company, Sparks

    Google Scholar 

  • Diviés C (1975) Remarks on ethanol oxidation by an “Acetobacter xylinum” microbial electrode. Ann Microbiol 126(2):175–186

    Google Scholar 

  • Dupont J, Ménard D, Hervé C, Chevalier F, Bèliaeff B, Minier B (1996) Rapid estimation of Escherichia coli in live marine shellfish using automated impedance measurement. J Appl Bacteriol 80:81–90

    CAS  PubMed  Google Scholar 

  • Dwivedi HP, Jaykus LA (2011) Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol 37:40–63

    CAS  PubMed  Google Scholar 

  • Dwivedi HP, Smiley RD, Jaykus L-A (2010) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334

    CAS  PubMed  Google Scholar 

  • Dwivedi HP, Mills JC, Devulder G (2014) Enrichment. In: Encyclopedia of food microbiology, vol 1. Academic Press, New York, pp 637–643

    Google Scholar 

  • Dwivedi HP, Smiley RD, Pincus DH (2015) Ch 11 in cultural methods for the enrichment and isolation of microorganisms. In: Salfinger Y, Tortorello ML (eds) Compendium of methods for the microbiological examination of foods, 5th edn. American Public Health Association, Washington, DC, pp 127–152

    Google Scholar 

  • Eden R (2014a) Classical and modern methods for detection and enumeration. In: Encyclopedia of food microbiology, vol 1. Elsevier Science Publishing Co Inc, San Diego, pp 667–673

    Google Scholar 

  • Eden R (2014b) Classical and modern methods for detection and enumeration. In: Encyclopedia of food microbiology, vol 1. Academic Press, New York, pp 667–673

    Google Scholar 

  • Ellis P, Meldrum R (2002) Comparison of the compact dry TC and 3M Petrifilm ACP dry sheet media methods with the spiral plate method for the examination of randomly selected foods for obtaining aerobic colony counts. J Food Prot 65:423–425

    CAS  PubMed  Google Scholar 

  • Entis P, Brodsky MK, Sharpe AN (1982) The effect of pre-filtration and enzyme treatment on membrane filtration of foods. J Food Prot 45:8–11

    PubMed  Google Scholar 

  • Ercole C, Del Gallo M, Mosiello L, Baccella S, Lepidi A (2003) Escherichia coli detection in vegetable food by a potentiometric biosensor. Sens Actuators B Chem 91:163–168

    CAS  Google Scholar 

  • Ercolini D (2014) Identification methods. In: Encyclopedia of food microbiology, vol 2. Academic Press, New York, pp 241–247

    Google Scholar 

  • Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102:96–101

    Google Scholar 

  • Felice CJ, Madrid RE, Olivera JM, Rotger VI, Valentinuzzi ME (1999) Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves. J Microbiol Methods 35:37–42

    CAS  PubMed  Google Scholar 

  • Feng P (1996) Emergence of rapid methods for identifying microbial pathogens in foods. J AOAC Int 79(3):809–812

    CAS  PubMed  Google Scholar 

  • Ferguson B (2018) Industrial microbiology market Review-5. (Personal communication). Strategic Consulting Inc., Woodstock

    Google Scholar 

  • Fitts R (1985) Development of a DNA-DNA hybridisation test for the presence of Salmonella in foods. Food Technol 39:95–102

    CAS  Google Scholar 

  • Food Safety and Inspection Service, USDA (2014) USDA/FSIS microbiology laboratory guidebook, 3rd edn, 1998 with revisions. https://www.fsis.usda.gov/wps/portal/fsis/topics/science/laboratories-and-procedures/guidebooks-and-methods/microbiology-laboratory-guidebook/microbiology-laboratory-guidebook. Accessed on 7 Jan 2019

  • Foong-Cunningham SC, Vasavada PC, Deak T, Fung DYC (2006) Rapid detection of mycotoxigenic molds and mycotoxins in fruit juice. ARI Bull Istanbul Tech Univ 54(11):28–38

    Google Scholar 

  • Frank JF, Gassem MA, Gillett RAN (1992) A direct viable count method suitable for use with Listeria monocytogenes. J Food Prot 55:697–700

    PubMed  Google Scholar 

  • Fung DYC (2002) Rapid methods and automation in microbiology. Compr Rev Food Sci Food Saf 1:3–22

    CAS  Google Scholar 

  • Galat A, Dufresne J, Combrisson J, Thepaut J, Bourtchai LB, Boyer M, Fourmestraux C (2016) Novel method based on chromogenic media for discrimination and selective enumeration of lactic acid bacteria in fermented milk products. Food Microbiol 55:86–94

    CAS  PubMed  Google Scholar 

  • Gill P (2008) Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids 27(3):224–243

    CAS  PubMed  Google Scholar 

  • Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10(7):866–875

    CAS  PubMed  Google Scholar 

  • Gómez R, Bashir R, Bhunia AK (2002) Microscale electronic detection of bacterial metabolism. Sensors Actuators B Chem 86:198–208

    Google Scholar 

  • Graf B, Adam T, Zill E, Gobel UB (2000) Evaluation of the Vitek-2 system for rapid identification of yeasts and yeast like organisms. J Clin Microbiol 38:1782–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo A, Liu T, Xie J, Wang H, Yang H, Zeng H, Chen T, Zhan M, Ma M (2010) Tracing the food sources of isolated strains of Listeria monocytogenes through fatty acid profiles analysis. Food Control 21(8):1092–1098

    CAS  Google Scholar 

  • Gutteridge CS, Arnott ML (1989) Rapid methods: an over the horizon view. In: Adams MR, Hope CFA (eds) Rapid methods in microbiology, Progress in industrial microbiology, vol 26. Elsevier, Amsterdam, pp 297–319

    Google Scholar 

  • Hall HJ, Kerr S, Mackie DP (1993) Monoclonal antibody-based ELISAs. In: Kroll RG, Gilmour A, Sussman M (eds) New techniques in food and beverage microbiology. Blackwell Scientific Publications, Oxford, pp 131–146

    Google Scholar 

  • Harbottle H (2018) Advanced methods for detection of foodborne pathogens. In: Tang Y-W, Stratton CW (eds) Advanced techniques in diagnostic microbiology. Springer Nature Switzerland AG, pp 219–239

    Google Scholar 

  • Harbottle H, Pendrak M (2013) Advanced methods for detection of foodborne pathogens. In: Tang YW, Stratton C (eds) Advanced techniques in diagnostic microbiology. Springer, Boston

    Google Scholar 

  • Hastings JW, Poitrikus CJ, Gupta SC, Kurfurst M, Makemson JC (1985) Biochemistry and physiology of bioluminescent bacteria. Adv Microbial Physiol 26:236–291

    Google Scholar 

  • Hefle SL (1995) Immunoassay fundamentals. Food Technol 49:102–107

    CAS  Google Scholar 

  • Hegde V, Leon-Velarde CG, Stam CM, Jaykus LA, Odumeru JA (2007) Evaluation of BBL CHROMagar Listeria agar for the isolation and identification of Listeria monocytogenes from food and environmental samples. J Microbiol Methods 68:82–87

    CAS  PubMed  Google Scholar 

  • Hermida M, Taboada M, Menendez S, Rodriguez- Otero JL (2000) Semi-automated direct epifluorescent filter technique for total bacterial count in raw milk. J AOAC Int 83:1345–1348

    CAS  PubMed  Google Scholar 

  • Hinton A, Cason JA, Hume ME, Ingram KD, Rad ZA (2004) Spread of Campylobacter spp. during poultry processing in different seasons. Poultry Sci 3:423–437

    Google Scholar 

  • Hohman B (2007) LED light source: major advance in fluorescent microscopy. Biomed Instrum Technol 41:461–464

    PubMed  Google Scholar 

  • Holbrook R (2000) Detection of microorganism in foods- principles of culture methods. Ch 62. In: Lund BM, Baird-Parker TC, Gould GW (eds) The microbiological safety and quality of food. Aspen Publishers, Inc., Gaithersburg, pp 1761–1790

    Google Scholar 

  • Holm C, Jespersen L (2003) A flow-cytometric gram staining technique for milk-associated bacteria. Appl Environ Microbiol 69:2857–2863

    CAS  PubMed  PubMed Central  Google Scholar 

  • ISO 16140; Part 2 (2016) Microbiology of food chain – method validation- part 2. Protocols for the validation of alternative (proprietary) methods against a reference method. ISO. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 16140, Part 3 (Draft under development) (n.d.) Microbiology of the food chain – method validation – part 3: protocol for the verification of reference and validated alternative methods implemented in a single laboratory. ISO. International Organization for Standardization, Geneva

    Google Scholar 

  • Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendaele M (2010) Review: alternative microbial methods: an overview and selection criteria. Food Microbiol 27:710–730

    PubMed  Google Scholar 

  • Johnson N, Chang Z, Bravo Almeida C, Michel M, Iversen C, Callanan M (2014) Evaluation of indirect impedance for measuring microbial growth in complex food matrices. Food Microbiol 42:8–13

    CAS  PubMed  Google Scholar 

  • Jones G (2017) Microbial metagenomics and the food industry. New Food 17(1). Available at: https://www.newfoodmagazine.com/article/29192/microbial-metagenomics-food-industry/. Accessed on 9 Dec

  • Jordano R, Medina LM (2000) Petrifilm – an enhanced cultural technique. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology, vol 3. Academic Press, London, pp 1662–2671

    Google Scholar 

  • Kalchayanand N, Arthur TM, Bosilevac JM, Wells JE, Wheeler TL (2013) Chromogenic agar medium for detection and isolation of Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 from fresh beef and cattle feces. J Food Prot 76:192–199

    PubMed  Google Scholar 

  • Kaniga K, Sory MP, Delor I, Saegerman C, Limet JN, Cornelis GR (1992) Monitoring of Yersinia enterocolitica in murine and bovine faeces on the basis of the chromosomally integrated lux AB marker gene. Appl Environ Microbiol 58:1024–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karami A, Gill P, Hoesin KM, Saghafinia M (2011) A review of the current isothermal amolification techniques: applications, advantages and disadvantages. J Global Infect Dis 3(3):293–302

    Google Scholar 

  • Kase JA, Maounounen-Laasri A, Son I, Lin A, Hammack TS (2015) Comparison of eight different agars for the recovery of clinically relevant non-O157 Shiga toxin-producing Escherichia coli from baby spinach, cilantro, alfalfa sprouts and raw milk. Food Microbiol 46:280–287

    CAS  PubMed  Google Scholar 

  • Kim G, Moon JH, Moh CY, Lim JG (2015) A microfluidic nano-biosensor for the detection of pathogenic salmonella. Biosens Bioelectron 67(Supplement C):243–247

    CAS  PubMed  Google Scholar 

  • Kodikara CD, Crew HH, Stewart GSAB (1991) Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol Lett 83:261–266

    Google Scholar 

  • Lambert MA, Patton CM, Barrett TJ, Moss CW (1987) Differentiation of campylobacter and campylobacter-like organisms by cellular fatty acid composition. J Clin Microbiol 29:1508–1512

    Google Scholar 

  • Law JW-F, Mutalib N-S A, Chan K-G, Lee LH (2014) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770–789

    PubMed  Google Scholar 

  • Li J, McDonald J (2014) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211

    PubMed  Google Scholar 

  • Li W, Raoult D, Fournier P-E (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–899

    CAS  PubMed  Google Scholar 

  • Liao C-H, Cooke PH, Niemira BA (2010) Localization, growth and inactivation of Salmonella Saintpaul on Jalapeno peppers. J Food Sci 75:M377–M382

    CAS  PubMed  Google Scholar 

  • Loessner MJ, Rees CED, Stewart GSAB, Scherer S (1996) Construction of luciferase reporter bacteriophage A511: lux AB for rapid and sensitive detection of viable Listeria cells. Appl Env Microbiol 62:1133–1140

    CAS  Google Scholar 

  • Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M (2015) Microfluidics integrated biosensors: a leading technology towards lab- on-a-chip and sensing applications. Sensors 15(12):20011–20031

    Google Scholar 

  • Mach PA, Lindberg KG, Lund ME (2000) Evaluation of a dry, rehydratable film method for rapid enumeration of Staphylococcus aureus. J AOAC Int 83:1096–1107

    CAS  PubMed  Google Scholar 

  • Mahon CD, Lehman C, Manuselis G (2015) Textbook of diagnostic microbiology. Saunders, Maryland Heights

    Google Scholar 

  • Manafi M (2000) New developments in chromogenic and fluorogenic culture media. Int J Food Microbiol 60:205–218

    CAS  PubMed  Google Scholar 

  • Mandal PK, Biswas AK, Choi K, Pal UK (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87–102

    Google Scholar 

  • Martins S, Selby M (1980) Evaluation of a rapid method for the quantitative estimation of coliforms in meat by impedimetric procedures. Appl Environ Microbiol 39:518–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mozola M, Halbert D, Chan S, Hsu HY, Johnson A, King W, Wilson S, Betts RP, Bankes P, Banks JG (1991) Detection of foodborne bacterial pathogens using a colorimetric DNA hybridisation method. In: Grange JM, Fox A, Morgan NL (eds) Genetic manipulation techniques and applications, Society for applied bacteriology technical series no. 28. Blackwell Scientific, Oxford, pp 203–216

    Google Scholar 

  • Mukkis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol 155:335–350

    Google Scholar 

  • Murphy MJ, Squirrell DJ (2000) Adenylate kinase. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology, vol 1. Academic Press, London, pp 16–24

    Google Scholar 

  • Murray PR (2012) What is new in clinical microbiology-microbial identification by MALDI-TOF mass spectroscopy. J Mol Diagn 14(5):419–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nebe von Caron G, Stephens PJ, Hewitt JR, Badley RA (2000) Analysis of bacterial function by multi-color fluorescence flow cytometry and single cell sorting. J Microbiol Meth 42:97–114

    CAS  Google Scholar 

  • Notermans S (1992) Quality control of immunological detection methods applied in food microbiology. In: Morgan MRA, Smith CJ, Williams PA (eds) Food safety and quality assurance: applications of immunoassay systems. Elsevier Applied Science, London, pp 253–257

    Google Scholar 

  • Olson WP (1996) Automated microbial identification and quantification: technologies for the 2000s. Interphram Press, Buffalo Grove

    Google Scholar 

  • Owens J, Thomas D, Thompson P, Timmerman W (1989) Indirect conductimetry: a novel approach to the conductimetric enumeration of microbial populations. Lett Appl Microbiol 9:245–249

    CAS  Google Scholar 

  • Park SH, Chang PS, Ryu S, Kang DH (2014) Development of a novel selective and differential medium for the isolation of Listeria monocytogenes. Appl Environ Microbiol 80:1020–1025

    PubMed  PubMed Central  Google Scholar 

  • Pashazadeh P, Mokhtarzadeh A, Hasanzadeh M, Hejazi M, Hashemi M, de La Guardia M (2017) Nano-materials for use in sensing of salmonella infections: recent advances. Biosens Bioelectron 87:1050–1064

    CAS  PubMed  Google Scholar 

  • Pavlic M, Griffiths MW (2009) Principles, applications and limitations of automated ribotyping as a rapid method in food safety. Foodborne Pathog Dis 6(9):1047–1055

    CAS  PubMed  Google Scholar 

  • Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150

    CAS  PubMed  Google Scholar 

  • Perry JD, Freydiere AM (2007) The application of chromogenic media in clinical microbiology. J Appl Microbiol 103:2046–2055

    CAS  PubMed  Google Scholar 

  • Perry-O’Keefe H, Stender H, Broomer A, Oliveira K, Coull J, Hyldig-Nielsen JJ (2001) Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific microorganisms. J Appl Microbiol 90:180–189

    PubMed  Google Scholar 

  • Petran RL, Grieme LE, Cunningham SF (2015) Culture methods for enumeration of microorganisms. Ch 6 in: cultural methods for the enrichment and isolation of microorganisms. In: Salfinger Y, Tortorello ML (eds) Compendium of methods for the microbiological examination of foods, 5th edn. American Public Health Association, Washington, DC, pp 75–87

    Google Scholar 

  • Pettipher GL (1989) The direct epifluorescent filter technique. Progr Ind Microbiol 26:19–56

    Google Scholar 

  • Priego R, Medina M, Jordano R (2000) Evaluation of petrifilm series 2000 as a possible rapid method to count coliforms in foods. J Food Prot 63:1137–1140

    CAS  PubMed  Google Scholar 

  • Priego R, Medina L, Jordano R (2011) Bactometer system versus traditional methods for monitoring bacteria populations in Salchichon during its ripening process. J Food Prot 74:145–148

    CAS  PubMed  Google Scholar 

  • Radcliffe DM, Holbrook R (2000) Detection of microorganisms in food-principles and application of immunological techniques. In: Lund BM, Baird-Parker TC, Gould G (eds) The microbiological safety and quality of food, vol 2. Aspen Publishers, Gaithersburg, pp 1791–1812

    Google Scholar 

  • Ronholm J, Nasheri N, Petronella N, Pagotto F (2016) Navigating microbiological food safety in an era of whole genome sequencing. Clin Microbiol Rev 29(4):837–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubab M, Shahbaz HM, Olaimat AN, Oh D-H (2018) Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens Bioelectron 105:49–57

    CAS  PubMed  Google Scholar 

  • Russell SM, Vasavada PC (2007) Techniques for identifying foodborne microorganisms. Ch 11. In: Microbiological analysis of red meat, poultry and eggs. Woodhead Publishing Ltd, Abington, Cambridge

    Google Scholar 

  • Russell SM, Cox NA, Bailey JS, Fung DYC (1997) Miniaturized biochemical procedures for identification of bacteria. J Rapid Methods Autom Microbiol 5:169–177

    CAS  Google Scholar 

  • Salfinger Y, Tortorello ML (2015) Compendium of methods for the microbiological examination of foods, 5th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    PubMed  PubMed Central  Google Scholar 

  • Sharma A (2000) Enzyme immunoassays: overview. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology, vol 1. Academic Press, London, pp 625–633

    Google Scholar 

  • Sharma S, Ferreira JL, Eblen BS, Whiting RC (2006) Detection of type A, B, E and F Clostridium botulinum neurotoxins in foods by using a amplified enzyme-linked immunosorbent assay with digoxigenin-labelled antibodies. App Environ Microbiol 72:1231–1238

    CAS  Google Scholar 

  • Sharma R, Ragavan KV, Thakur MS, Raghavarao KSMS (2015) Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron 74:612–627

    CAS  PubMed  Google Scholar 

  • Sharpe AN (1994) Development and evaluation of membrane filtration techniques in microbial analysis. In: Patel PD (ed) Rapid analysis techniques in food microbiology. Blackie Academic & Professional, London, pp 29–60

    Google Scholar 

  • Shen ZQ, Wang JF, Qiu ZG, Jin M, Wang XW, Chen ZL, Li JW, Cao FH (2011) QCM immunosensor detection of Escherichia coli O157:H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold. Biosens Bioelectron 26:3376–3381

    CAS  PubMed  Google Scholar 

  • Shrestha NK, Scalera NM, Wilson DA, Brehm- Stecher B, Procop GW (2011) Rapid identification of Staphylococcus aureus and methicillin resistance by flow cytometry using a peptide nucleic acid probe. J Clin Microbiol 49:3383–3385

    PubMed  PubMed Central  Google Scholar 

  • Sperber WH, Moorman MA, Freier TA (2015) Cultural methods for the enrichment and isolation of microorganisms. Ch 5. In: Salfinger Y, Tortorello ML (eds) Compendium of methods for the microbiological examination of foods, 5th edn. American Public Health Association, Washington, DC, pp 67–73

    Google Scholar 

  • Stanley PE (1989) A review of bioluminescent ATP techniques in rapid microbiology. J Biolum Chemilum 4:375–380

    CAS  Google Scholar 

  • Stewart GSAB, Williams P (1992) lux genes and the applications of bacterial bioluminescence. J Gen Microbiol 138:1289–1300

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Frank JF (2001) Confocal microscopy and microbial viability detection for food research. J Food Prot 64(12):2088–2102

    CAS  PubMed  Google Scholar 

  • Taniwaki MH, da Silva N, Banhe AA, Iamanaka BT (2001) Comparison of culture media, simplate and petrifilm for enumeration of yeasts and molds in food. J Food Prot 64:1592–1596

    CAS  PubMed  Google Scholar 

  • The FDA’s Bacteriological Analytical Manual On line (BAM) (2018). https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm114664.htm. Accessed on 7 Jan 2019

  • Tortorello ML (2014) Microscopy. In: Encyclopedia of food microbiology, vol 3. Academic Press, New York, pp 618–620

    Google Scholar 

  • Tortorello ML, Reineke KF, Stewart DS (1997) Comparison of antibody-direct epifluorescent filter technique with the most probable number procedure for rapid enumeration of Listeria in fresh vegetables. J AOAC Int 80:1208–1214

    CAS  PubMed  Google Scholar 

  • Turpin PE, Maycroft K, Bedford J, Rowlands C, Wellington EMH (1993) A rapid luminescent-phage based MPN method for the enumeration of Salmonella typhimurium in environmental samples. Lett Appl Microbiol 16:24–27

    Google Scholar 

  • Van Dijk S, Bruins MJ, Ruijs GJHM (2009) Evaluation and implementation of a chromogenic agar medium for salmonella detection in stool in routine laboratory diagnostics. J Clin Microbiol 47(2):456–458

    PubMed  Google Scholar 

  • Vasavada PC (1993a) Rapid methods and automation in dairy microbiology. J Dairy Sci 76:3101–3113

    CAS  PubMed  Google Scholar 

  • Vasavada PC (1993b) Rapid methods and automation in food microbiology: beyond Delphi forecast. J Rapid Methods Autom Microbiol 2(1):1–7

    Google Scholar 

  • Vasavada PC (2001) Getting really rapid test results: advances in pathogen and toxin detection for the food industry. Food Saf 7(3):28–38

    Google Scholar 

  • Vasavada PC, Chandler RE, Hull RR (1993) Evolving methodologies for microbiological examinations of milk dairy foods. Dairy Food Environ Sanitation 13(9):510–515

    Google Scholar 

  • Vodovotz Y, Vittadini E, Coupland J, McClements DJ, Chinachoti P (1996) Bridging the gap: use of confocal microscopy in food research. Food Technol 50(6):74–82

    Google Scholar 

  • Walker K, Ripandelli N, Flint S (2005) Rapid enumeration of Bifidobacterium lactis in milk powders using impedance. Int Dairy J 15:183–188

    Google Scholar 

  • Wang RF, Cao WW, Cerniglia CE (1997) A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol 83:727–736

    CAS  PubMed  Google Scholar 

  • Wawerla MA, Stolle A, Schaleh B, Eisgruber H (1999) Impedance microbiology: applications in food hygiene. J Food Prot 62:1488–1496

    CAS  PubMed  Google Scholar 

  • Webb DJ, Brown CM (2013) Epi-fluorescence microscopy methods. Mol Biol 931:29–59

    CAS  Google Scholar 

  • Wehr HM, Frank JH (2004) Standard methods for the examination of dairy products, 17th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Wenjun L, Raoult D, Fournier PE (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916

    Google Scholar 

  • Weschler T (2014) Food micro, eighth edition: microbiology testing in the global food industry. Strategic Consulting Inc., Woodstock

    Google Scholar 

  • Whitehead KA, Smith LA, Verran J (2010) The detection and influence of food soils on microorganisms on stainless steel using scanning electron microscopy and epifluorescence microscopy. Int J Food Microbiol 14(Suppl 1):S125–S133

    Google Scholar 

  • Wild D (ed) (1994) Handbook of immunoassays. Stockton Press, New York

    Google Scholar 

  • Wilson BK, Vigil GD (2013) Automated bacterial identification by angle resolved dark-field imaging. Biomed Opt Express 4(9):1692–1701

    PubMed  PubMed Central  Google Scholar 

  • Wittenbrink MM, Thiele D, Krauss H (1994a) Comparison of dark-field microscopy, culture, and polymerase chain reaction (PCR) for detection of Borrelia burgdorferi in field-collected Ixodes ricinus ticks. Zentralblatt für Bakteriologie 281(2):183–191

    CAS  PubMed  Google Scholar 

  • Yibar A, Cetinkaya F, Soyutemiz GE (2012) Detection of rope-producing bacillus in bread and identification of isolates to species level by Vitek 2 system. J Biol Environ Sci 6(18):243–248

    Google Scholar 

  • Wittenbrink MM, Thiele D, Krauss H (1994b) Comparison of dark-field microscopy, culture, and polymerase chain reaction (PCR) for detection of Borrelia burgdorferi in field-collected Ixodes ricinus ticks. Zentralblatt für Bakteriologie 281(2):183–191

    CAS  PubMed  Google Scholar 

  • Xu H, Tang F, Dai J, Wang C, Zhou X (2018) Ultrasensitive and rapid count of Escherichia coli using magnetic nanoparticle probe under dark-field microscope. BMC Microbiol 18(100):1–6

    CAS  Google Scholar 

  • Zwirglmaier K (2005) Fluorescence in situ hybridization (FISH)—the next generation. FEMS Microbiol Lett 246:151–158

    CAS  PubMed  Google Scholar 

  • Zhao Y, Chen F, Li Q, Wang L, Fan F (2015) Isothermal amplification of nucleic acids. Chem Rev 115(22):12491–12545

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnendu C. Vasavada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasavada, P.C., Lee, A., Betts, R. (2020). Conventional and Novel Rapid Methods for Detection and Enumeration of Microorganisms. In: Demirci, A., Feng, H., Krishnamurthy, K. (eds) Food Safety Engineering. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-42660-6_4

Download citation

Publish with us

Policies and ethics