Skip to main content

Geometric Origami

  • Chapter
  • First Online:
Imagine Math 7

Abstract

In this short note we shall briefly describe a few flavors of contemporary geometric origami, from kusudama to tessellations and beyond. It will be an impressionistic and not technical presentation, just to give an idea of what can be done with geometric origami. However, we shall digress to present a way to trace a d × d square grid by folding only, and we shall touch upon the Kawasaki–Justin–Robertson theorem giving a necessary and sufficient condition for deciding when a sequence of folds produces a flat, 2-dimensional model—at least in theory…

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.J. Lang, M. Bolitho, Z. You (eds.), Origami 7 (Tarquin, St. Albans, 2018)

    Google Scholar 

  2. http://www.origami.me

  3. R.J. Lang, Origami Insects and their Kin (Dover, New York, 1995)

    Google Scholar 

  4. F. Kawahata, S. Nishikawa, Origami Insects I (Origami House, Tokyo, 2000)

    Google Scholar 

  5. R.J. Lang, Origami Insects II (Origami House, Tokyo, 2003)

    Google Scholar 

  6. http://www.giladorigami.com

  7. R.J. Lang, Origami Design Secrets, 1st edn. (A.K. Peters, Natick, 2003). Second edition: CRC Press, Boca Raton, 2011

    Google Scholar 

  8. http://www.paperfolding.com/history

  9. http://www.britishorigami.info/academic/lister/index.php

  10. R.J. Lang, Twists, Tilings and Tessellations: Mathematical Methods for Geometric Origami (CRC Press, Boca Raton, 2018)

    MATH  Google Scholar 

  11. J. Montroll, Galaxy of Origami Stars (CreateSpace, Leipzig, 2012)

    Google Scholar 

  12. T. Fuse, Spirals (Viereck Verlag, Berlin, 2012)

    Google Scholar 

  13. J. Montroll, Origami Polyhedra Design (A.K. Peters, Natick, 2009)

    Google Scholar 

  14. J. Montroll, Origami and Math (Dover, New York, 2012)

    Google Scholar 

  15. E. Lukasheva, Modern Kusudama Origami (Amazon, Charleston, 2016)

    Google Scholar 

  16. S. Cicalò, The PJS technique and the construction of the first origami level-4 Menger sponge, in Origami 7, ed. by R.J. Lang, M. Bolitho, Z. You, vol. 2 (Tarquin, St. Albans, 2018), pp. 653–668

    Google Scholar 

  17. S.A. Robertson, Isometric folding of Riemannian manifolds. Proc. R. Soc. Edinb. 79, 275–284 (1978)

    Article  MathSciNet  Google Scholar 

  18. J. Justin, Mathematics of origami, part 9, in British Origami, June (1986), pp. 28–30

    Google Scholar 

  19. T. Kawasaki, On the relation between mountain-creases and valley-creases of a flat origami, in Proceedings of the First International Meeting of Origami Science and Technology, ed. by H. Huzita (Università di Padova, Padova, 1989), pp. 229–237

    Google Scholar 

  20. B. Dacorogna, P. Marcellini, E. Paolini, Lipschitz-continuous local isometric immersions: rigid maps and origami. J. Math. Pures Appl. 90, 66–81 (2008)

    Article  MathSciNet  Google Scholar 

  21. B. Dacorogna, P. Marcellini, E. Paolini, Origami and partial differential equations. Notices Am. Math. Soc. 57, 598–606 (2010)

    MathSciNet  MATH  Google Scholar 

  22. P. Marcellini, E. Paolini, Origami and partial differential equations, in Imagine Math, ed. by M. Emmer (Springer, Berlin, 2012), pp. 241–250

    Chapter  Google Scholar 

  23. I. Garibi, Origami Tessellations for Everyone (Amazon, Wrocław, 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Abate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abate, M. (2020). Geometric Origami. In: Emmer, M., Abate, M. (eds) Imagine Math 7. Springer, Cham. https://doi.org/10.1007/978-3-030-42653-8_8

Download citation

Publish with us

Policies and ethics