Skip to main content

Part of the book series: Interdisciplinary Contributions to Archaeology ((IDCA))

Abstract

Natural fibers may be encountered in a variety of archaeological contexts. Plants produce seed, bast, and leaf fibers; animals produce hairs and silk; and deposits of fibrous minerals are widespread. The fibers recovered from an archaeological site may provide information about the past environment at the site, about past human diet, about human technology, about human cultural practices, and about ancient trade routes. Several schemes for the preparation of natural fibers (especially vegetable fibers) for analysis have been proposed. Despite advances in analytical instrumentation, the primary tool for the identification of natural fibers remains the polarized light microscope. Despite the simplicity of the instrumentation required for the identification of natural fibers, considerable experience is required to develop expertise in this area. In addition to providing the basic instrumentation for analysis of natural fibers, laboratories attempting the analysis of natural fibers require authenticated samples of natural fibers and detailed, validated protocols for the recovery, analysis, documentation, and preservation of the fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Association of Textile Chemists and Colorists. (2018). AATCC technical manual. Research Triangle Park, NC: American Association of Textile Chemists and Colorists.

    Google Scholar 

  • Appleyard, H. M. (1978). Guide to the identification of animal fibres (2nd ed.). Leeds: Leeds British Textile Technology Group.

    Google Scholar 

  • Barber, E. J. W. (1991). Prehistoric textiles: The development of cloth in the Neolithic and Bronze Ages. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Bisbing, R. E. (2002). The forensic identification and association of human hair. In R. Saferstein (Ed.), Forensic science handbook (Vol. I, pp. 389–428). Upper Saddle River, NJ: Pearson Education.

    Google Scholar 

  • Blatt, S. H., Redmond, B. G., Cassman, V., & Sciulli, P. W. (2011). Dirty teeth and ancient trade: Evidence of cotton fibres in human dental calculus from Late Woodland, Ohio. International Journal of Osteoarchaeology, 21, 669–678.

    Article  Google Scholar 

  • Browne, C. (2003). Salamander’s wool: The historical evidence for textiles woven with asbestos fibre. Textile History, 34(1), 64–73.

    Article  Google Scholar 

  • Brunner, H., & Cornan, B. (1974). The identification of mammalian hair. Melbourne, VIC: Inkata Press Proprietary Ltd..

    Google Scholar 

  • Buckley, S., Usai, D., Jakob, T., Radini, A., & Hardy, K. (2014). Dental calculus reveals unique insights into food Items, cooking and plant processing in prehistoric central Sudan. PLoS One, 9(7), e100808.

    Article  Google Scholar 

  • Carr, D., Cruthers, N., Smith, C., & Myers, T. (2008). Identification of selected vegetable textile fibres. Studies in Conservation, 53(Suppl 2), 75–87.

    Article  Google Scholar 

  • Catling, D., & Grayson, J. (1998). Identification of vegetable fibres. London: Archtype Publications, Ltd..

    Google Scholar 

  • Cook, R., & Norton, D. (1982). An evaluation of mounting media for use in forensic textile fibre examination. Journal of the Forensic Science Society, 22(1), 57–63.

    Article  Google Scholar 

  • Edwards, H. G. M., & Vandenabeele, P. (2016). Raman spectroscopy in art and archaeology. Philosophical Transactions of the Royal Society of London. Series A, 374, 20160052. https://doi.org/10.1098/rsta.2016.0052. Retrieved April 29, 2018.

    Article  Google Scholar 

  • Edwards, H. G. M., Farwell, D. W., & Webster, D. (1997). FT Raman microscopy of untreated natural plant fibres. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53, 2383–2392.

    Article  Google Scholar 

  • Evans, J. W. (1906). The identity of the Amiantos or Karystian stone of the ancients with asbestos. Mineralogical Magazine, 14(65), 143–148.

    Article  Google Scholar 

  • Eyring, M. B., & Gaudette, B. D. (2005). An introduction to the forensic aspects of textile fiber examination. In R. Saferstein (Ed.), Forensic science handbook (Vol. II, pp. 231–295). Upper Saddle River, NJ: Pearson Education.

    Google Scholar 

  • Fergusson, S. M., & Hemming, J. (2018). Fibres, yarns and fabrics: An introduction to production, structure and properties. In J. Robertson, C. Roux, & K. G. Wiggins (Eds.), Forensic examination of fibres (3rd ed., pp. 1–60). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Gargulak, J. D., Lebo, S. E., & McNally, T. J. (2015). Lignin. In Kirk-Othmer encyclopedia of chemical technology. New York, NY: Wiley. https://doi.org/10.1002/0471238961.12090714120914.a01.pub3. Retrieved March 25, 2018.

    Chapter  Google Scholar 

  • Garside, P., & Wyeth, P. (2003). Identification of cellulosic fibres by FTIE spectroscopy: Thread and single fibre analysis by attenuated total reflectance. Studies in Conservation, 48(4), 269–275.

    Article  Google Scholar 

  • Good, I. (2001). Archaeological textiles: A review of current research. Annual Review of Anthropology, 30, 209–226.

    Article  Google Scholar 

  • Grieve, M., & Deck, S. (1995). A new mounting medium for the forensic microscopy of textile fibres. Science & Justice, 35(2), 109–112.

    Article  Google Scholar 

  • Gillard, R. D., Hardman, S. M., Thomas, R. G., Watkinson, D. E. (2013) The mineralization of fibres in burial environments. Studies in Conservation, 39 (2):132–140

    Google Scholar 

  • van de Guchte, M., & Edging, R. (1994). Plants and people: An introduction to paleoethnobotany. In S. U. Wisseman & W. S. Williams (Eds.), Ancient technologies and archaeological materials (pp. 99–119). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Hamlyn, P. F., Nelson, G., & McCarthy, B. J. (1992). Wool-fiber identification by means of novel species-specific DNA probes. Journal of the Textile Institute, 83(1), 97–103.

    Article  Google Scholar 

  • Hamlyn, P. F., Nelson, G., Asghar, N., & McCarthy, B. J. (2001). SUPREME-project: Identification of specialty animal fibres using DNA profiling. In M. Gerkins & C. Renieri (Eds.), Progress in South American Camelids Research: Proceedings of the 3rd European Symposium and Supreme European Seminar, Gottingen, Germany, 27–29 May 1999 (pp. 117–121). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Hardy, K. (2008). Prehistoric string theory: How twisted fibres helped to shape the world. Antiquity, 82(316), 271–280.

    Article  Google Scholar 

  • Hardy, K., Radini, A., Buckley, S., Blasco, R., Copeland, L., Burjachs, F., Girbal, J., Yll, R., Eudald Carbonell, E., & Bermúdez de Castro, J. M. (2017). Diet and environment 1.2 million years ago revealed through analysis of dental calculus from Europe’s oldest hominin at Sima del Elefante, Spain. Die Naturwissenschaften, 104(1-2), 2.

    Article  Google Scholar 

  • Haugan, E., & Holst, B. (2013). Determining the fibrillar orientation of bast fibres with polarized light microscopy: The modified Herzog test (red plate test) explained. Journal of Microscopy, 252(2), 159–168.

    Article  Google Scholar 

  • Haugan, E., & Holst, B. (2014). Flax look-alikes: Pitfalls of ancient plant fibre identification. Archaeometry, 56(6), 951–960.

    Article  Google Scholar 

  • Helbaek, H. (1963). Textiles from Catal Huyuk. Archaeology, 16(1), 39–46.

    Google Scholar 

  • Henson, C. R., & Rowe, W. F. (2002). The effect of elevated temperature on the microscopic morphology of human head hair. Microscope, 50(1), 21–24.

    Google Scholar 

  • Hicks, J. W. (1977). Microscopy of hairs: A practical guide and manual. Washington, DC: Federal Bureau of Investigation.

    Google Scholar 

  • Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A., & Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312(5991), 282–284.

    Article  Google Scholar 

  • Higuchi, R., Vonbolderingen, C. H., Sensabaugh, G. F., & Ehrlich, H. A. (1988). DNA typing from single hairs. Nature, 332(6164), 543–546.

    Article  Google Scholar 

  • Hunter, D. (1947). Papermaking: The history and technique of an ancient craft. New York, NY: Dover Publications.

    Google Scholar 

  • Kalbe, J., Kuropka, R., Meyerstork, L. S., Sauter, S. L., Loss, P., Henco, K., Reisner, D., Hocker, H., & Berndt, H. (1988). Isolation and characterization of high-molecular mass DNA from hair shafts. Biological Chemistry Hoppe-Seyler, 369(5), 413–416.

    Article  Google Scholar 

  • Luniak, B. (1953). The identification of textile fibres: Qualitative and quantitative analysis of fibre blends. London: Sir Isaac Pitman & Sons, Ltd..

    Google Scholar 

  • Ma, X., Wei, G., Grifa, C., Kang, Y., Khanjian, H., & Kakoulli, I. (2018). Multi-analytical studies of archaeological Chinese earthen plasters: The inner wall of the Longhu Hall (Yuzhen Palace, ancient building complex, Wudang Mountains, China). Archaeometry, 60(1), 1–18.

    Article  Google Scholar 

  • McCrone, W. C. (1974). Detection and identification of asbestos by microscopical dispersion staining. Environmental Health Perspectives, 9(1), 57–61.

    Article  Google Scholar 

  • McCrone, W. C. (1980). The asbestos particle atlas. Ann Arbor, MI: Ann Arbor Science Publishers.

    Google Scholar 

  • Nelson, G., Hamlyn, P. F., Holden, L., & McCarthy, B. J. (1992). A species-specific DNA probe for goat fiber identification. Textile Research Journal, 62(10), 590–595.

    Article  Google Scholar 

  • Palenik, S. J. (2018). Microscopical examination of fibres. In J. Robertson, C. Roux, & K. G. Wiggins (Eds.), Forensic examination of fibres (3rd ed., pp. 145–178). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Pearsall, D. M. (2000). Paleoethnobotany: A handbook of procedures (2nd ed.). San Diego, CA: Academic Press.

    Google Scholar 

  • Radini, A., Buckley, S., Rosas, A., Estalrrich, A., de la Rasilla, M., & Hardy, K. (2016). Neanderthals, trees and dental calculus: New evidence from El Sidrón. Antiquity, 90(350), 290–301.

    Article  Google Scholar 

  • Raheel, M. (1994). History, identification, and characterization of old world fibers and dyes. In S. U. Wisseman & W. S. Williams (Eds.), Ancient technologies and archaeological materials (pp. 121–153). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Richardson, L. (1987). State says asbestos at Fairfax site poses no threat. The Washington Post. Retrieved March 10, 2018, from https://www.washingtonpost.com/archive/1987/11/state-says-asbestos-at-fairfax-site-poses-no-threat.pdf.

  • Robertson, J. (1998). Forensic examination of hair. London: Taylor and Francis.

    Google Scholar 

  • Roe, G. M., Cook, R., & North, C. (1991). An evaluation of mountants for use in forensic hair examination. Journal of the Forensic Science Society, 31(1), 59–65.

    Article  Google Scholar 

  • Rowe, W. F. (1997). Biodegradation of hairs and fibers. In M. H. Sorg & W. D. Haglund (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 337–352). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ryder, M. L. (1965). Report of textiles from Catal Huyuk. Anatolian Studies, 15, 175–176.

    Article  Google Scholar 

  • Srinivasan, R. & Jakes, K. A. (1997) Optical and scanning electron microscopic study of the effects of charring on Indian hemp (Apocynum cannabinum L) fibres. Journal of Archaeological Science, 24(6), 517–527.

    Google Scholar 

  • Subramanian, S., Karthik, T., & Vijayaraaghavan, N. N. (2005). Single nucleotide polymorphism for animal fibre identification. Journal of Biotechnology, 116(2), 153–158.

    Article  Google Scholar 

  • Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wiggins, K., & Drummond, P. (2007). Identifying a suitable mounting medium for use in forensic fibre examination. Science & Justice, 47(1), 2–8.

    Article  Google Scholar 

  • Young, P. A. (2003). Fibers, vegetable. In Kirk-Othmer encyclopedia of chemical technology. New York, NY: Wiley. https://doi.org/10.1002/0471238961.2205070525152114.a01.pub2. Retrieved March 25, 2018.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rowe, W.F. (2020). Identification of Natural Fibers. In: Henry, A.G. (eds) Handbook for the Analysis of Micro-Particles in Archaeological Samples. Interdisciplinary Contributions to Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-030-42622-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42622-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42621-7

  • Online ISBN: 978-3-030-42622-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics