Skip to main content

Starch Granules as Markers of Diet and Behavior

  • Chapter
  • First Online:
Handbook for the Analysis of Micro-Particles in Archaeological Samples

Part of the book series: Interdisciplinary Contributions to Archaeology ((IDCA))

Abstract

Starch granules, the energy-storage molecules produced by plants, are increasingly used in archaeological studies as markers of human diet and food processing. While starch granules are organic in nature, their semi-crystalline structure likely contributes to their preservation in some protected archaeological contexts, such as within dental calculus or pottery crusts. However, many naturally-occurring and human-induced processes can damage or destroy starches, so a detailed understanding of how starches are formed and ultimately preserved is necessary to accurately translate the starch record into meaningful statements about human behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranguren, B., Becattini, R., Lippi, M. M., & Revedin, A. (2007). Grinding flour in Upper Palaeolithic Europe (25,000 years bp). Antiquity, 81, 845–855.

    Article  Google Scholar 

  • Babot, M. d. P. (2003). Starch grain damage as an indicator of food processing. In D. M. Hart & L. A. Wallis (Eds.), Phytolith and starch research in the Australian-Pacific-Asian regions: The state of the art (pp. 69–81). Canberra: Pandanus Press.

    Google Scholar 

  • Balme, J., & Beck, W. E. (2002). Starch and charcoal: Useful measures of activity areas in archaeological rockshelters. Journal of Archaeological Science, 29, 157–166.

    Article  Google Scholar 

  • Barton, H., & Matthews, P. J. (2006). Taphonomy. In R. Torrence & H. Barton (Eds.), Ancient starch research (pp. 75–94). Walnut Creek, CA: Left Coast Press.

    Google Scholar 

  • BeMiller, J. N., & Whistler, R. L. (2009). Starch: Chemistry and technology. New York: Academic Press.

    Google Scholar 

  • Boyadjian, C. H. C., Eggers, S., & Reinhard, K. (2007). Dental wash: A problematic method for extracting microfossils from teeth. Journal of Archaeological Science, 34, 1622–1628.

    Article  Google Scholar 

  • Boyadjian, C. H. C., Eggers, S., & Scheel-Ybert, R. (2016). Evidence of plant foods obtained from the dental calculus of individuals from a Brazilian shell mound. In Wild harvest: Plants in the hominine and pre-agrarian human worlds (pp. 215–240). Oxford: Oxbow Books.

    Chapter  Google Scholar 

  • Ciofalo, A. J., Keegan, W. F., Pateman, M. P., Pagán-Jiménez, J. R., & Hofman, C. L. (2018). Determining precolonial botanical foodways: Starch recovery and analysis, Long Island, The Bahamas. Journal of Archaeological Science: Reports, 21, 305–317. https://doi.org/10.1016/j.jasrep.2018.07.022.

    Article  Google Scholar 

  • Coster, A. C. F., & Field, J. H. (2015). What starch grain is that?—A geometric morphometric approach to determining plant species origin. Journal of Archaeological Science, 58, 9–25. https://doi.org/10.1016/j.jas.2015.03.014.

    Article  Google Scholar 

  • Crowther, A., Haslam, M., Oakden, N., Walde, D., & Mercader, J. (2014). Documenting contamination in ancient starch laboratories. Journal of Archaeological Science, 49, 90. https://doi.org/10.1016/j.jas.2014.04.023.

    Article  Google Scholar 

  • Cummings, L. S., Yost, C., & SoÅ‚tysiak, A. (2018). Plant microfossils in human dental calculus from Nemrik 9, a pre-pottery Neolithic site in Northern Iraq. Archaeological and Anthropological Sciences, 10(4), 883–891. https://doi.org/10.1007/s12520-016-0411-3.

    Article  Google Scholar 

  • Duke, G. S., Vásquez-Sanchez, V. F., & Rosales-Tham, T. E. (2018). Starch grain evidence of potato consumption at the Late Moche (AD 600–850) site of Wasi Huachuma, Peru. Journal of Archaeological Science, 100, 74–79. https://doi.org/10.1016/j.jas.2018.10.006.

    Article  Google Scholar 

  • Evers, A. D. (1971). Scanning electron microscopy of wheat starch. III. Granule development in the endosperm. Starch, 23(5), 157–162. https://doi.org/10.1002/star.19710230502.

    Article  Google Scholar 

  • Fiorenza, L., Benazzi, S., Henry, A. G., Salazar-García, D. C., Blasco, R., Picin, A., et al. (2015). To meat or not to meat? New perspectives on Neanderthal ecology. American Journal of Physical Anthropology, 156, 43–71. https://doi.org/10.1002/ajpa.22659.

    Article  Google Scholar 

  • Fullagar, R., Furby, J., & Hardy, B. L. (1996). Residues on stone artefacts: State of a scientific art. Antiquity, 70, 740–745.

    Article  Google Scholar 

  • García-Granero, J. J., Urem-Kotsou, D., Bogaard, A., & Kotsos, S. (2017). Cooking plant foods in the northern Aegean: Microbotanical evidence from Neolithic Stavroupoli (Thessaloniki, Greece). Quaternary International, 496, 140. https://doi.org/10.1016/j.quaint.2017.04.007.

    Article  Google Scholar 

  • Gismondi, A., D’Agostino, A., Canuti, L., Di Marco, G., Martínez-Labarga, C., Angle, M., et al. (2018). Dental calculus reveals diet habits and medicinal plant use in the Early Medieval Italian population of Colonna. Journal of Archaeological Science: Reports, 20, 556–564. https://doi.org/10.1016/j.jasrep.2018.05.023.

    Article  Google Scholar 

  • Grüss, J. (1929). Saccharomyces winlocki, die Hefe aus den Pharaonengräbern. Tageszeitung für Brauerei, 27(59), 275–278.

    Google Scholar 

  • Hardy, B. L. (2004). Neanderthal behavior and stone tool function at the Middle Palaeolithic site of La Quina, France. Antiquity, 78(301), 547–565.

    Article  Google Scholar 

  • Hardy, B. L., & Moncel, M.-H. (2011). Neanderthal use of fish, mammals, birds, starchy plants and wood 125–250,000 years ago. PLoS One, 6(8), e23768.

    Article  Google Scholar 

  • Hardy, K., Radini, A., Buckley, S., Sarig, R., Copeland, L., Gopher, A., & Barkai, R. (2016). Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quaternary International, 398, 129–135. https://doi.org/10.1016/j.quaint.2015.04.033.

    Article  Google Scholar 

  • Haslam, M. (2004). The decomposition of starch grains in soils: Implications for archaeological residue analysis. Journal of Archaeological Science, 31, 1715–1734.

    Article  Google Scholar 

  • Henry, A. G., Hudson, H. F., & Piperno, D. R. (2009). Changes in starch grain morphologies from cooking. Journal of Archaeological Science, 36(3), 915–922.

    Article  Google Scholar 

  • Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences of the United States of America, 108(2), 486–491.

    Article  Google Scholar 

  • Henry, A. G., Brooks, A. S., & Piperno, D. R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution, 69, 44–54. https://doi.org/10.1016/j.jhevol.2013.12.014.

    Article  Google Scholar 

  • Henry, A. G., Debono Spiteri, C., Büdel, T., Hutschenreuther, A., Schmidt, S., & Watzke, J. (2016). Methods to isolate and quantify damaged and gelatinized starch grains. Journal of Archaeological Science: Reports, 10, 142–146. https://doi.org/10.1016/j.jasrep.2016.09.003.

    Article  Google Scholar 

  • Higgins, S. (1988). Starch grain differentiation on archaeological residues: A feasibility study. Honor’s Thesis, University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Hutschenreuther, A., Watzke, J., Schmidt, S., Büdel, T., & Henry, A. G. (2017). Archaeological implications of the digestion of starches by soil bacteria: Interaction among starches leads to differential preservation. Journal of Archaeological Science: Reports, 15, 95–108. https://doi.org/10.1016/j.jasrep.2017.07.006.

    Article  Google Scholar 

  • ICSN. (2011). The International Code for Starch Nomenclature. Retrieved November 2, 2011, from http://fossilfarm.org/ICSN/Code.html.

  • Jin, Y., & Yip, H.-K. (2002). Supragingival calculus: Formation and control. Critical Reviews in Oral Biology and Medicine, 13(5), 426–441.

    Article  Google Scholar 

  • King, D. J., Searcy, M. T., Yost, C. L., & Waller, K. (2017). Corn, beer, and marine resources at Casas Grandes, Mexico: An analysis of prehistoric diets using microfossils recovered from dental calculus. Journal of Archaeological Science: Reports, 16, 365–379. https://doi.org/10.1016/j.jasrep.2017.10.013.

    Article  Google Scholar 

  • Lentfer, C. J. (2009). Building a comparative starch reference collection for Indonesia and its application to palaeoenvironmental and archaeological research. In Archaeological science under a microscope: Studies in residue and ancient DNA analysis in honour of Thomas H. Loy (pp. 80–101). Canberra: ANU E Press.

    Google Scholar 

  • Leonard, C., Vashro, L., O’Connell, J. F., & Henry, A. G. (2015). Plant microremains in dental calculus as a record of plant consumption: A test with Twe forager-horticulturalists. Journal of Archaeological Science: Reports, 2, 449–457. https://doi.org/10.1016/j.jasrep.2015.03.009.

    Article  Google Scholar 

  • Lieverse, A. R. (1999). Diet and the aetiology of dental calculus. International Journal of Osteoarchaeology, 9, 219–232.

    Article  Google Scholar 

  • Liu, L., Bestel, S., Shi, J., Song, Y., & Chen, X. (2013). Paleolithic human exploitation of plant foods during the last glacial maximum in North China. Proceedings of the National Academy of Sciences, 110(14), 5380–5385. https://doi.org/10.1073/pnas.1217864110.

    Article  Google Scholar 

  • Liu, L., Ma, S., & Cui, J. (2014). Identification of starch granules using a two-step identification method. Journal of Archaeological Science, 52, 421–427. https://doi.org/10.1016/j.jas.2014.09.008.

    Article  Google Scholar 

  • Liu, L., Wang, J., Rosenberg, D., Zhao, H., Lengyel, G., & Nadel, D. (2018). Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. Journal of Archaeological Science: Reports, 21, 783–793. https://doi.org/10.1016/j.jasrep.2018.08.008.

    Article  Google Scholar 

  • Loy, T. H., Spriggs, M., & Wickler, S. (1992). Direct evidence for human use of plants 28,000 years ago: Starch residues on stone artefacts from the northern Solomon Islands. Antiquity, 66, 898–912.

    Article  Google Scholar 

  • MacGregor, A., & Ballance, D. (1980). Hydrolysis of large and small starch granules from normal and waxy barley cultivars by alpha-amylases from barley malt. Cereal Chemistry, 57(6), 397–402.

    Google Scholar 

  • Mackie, M., Radini, A., & Speller, C. F. (2017). The sustainability of dental calculus for archaeological research. In Shallow pasts, endless horiozons: Sustainability & archaeology: Proceedings of the 18th Annual Chacmool Archaeology Conference (pp. 74–81). Retrieved September 25, 2018, from http://eprints.whiterose.ac.uk/112715/.

  • Mercader, J., Abtosway, M., Baquedano, E., Bird, R. W., Díez-Martín, F., Domínguez-Rodrigo, M., et al. (2017). Starch contamination landscapes in field archaeology: Olduvai Gorge, Tanzania. Boreas, 46(4), 918–934. https://doi.org/10.1111/bor.12241.

    Article  Google Scholar 

  • Mercader, J., Akeju, T., Brown, M., Bundala, M., Collins, M. J., Copeland, L., et al. (2018). Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. Facets, 3(1), 777–798.

    Article  Google Scholar 

  • Messner, T. C., & Schindler, B. (2010). Plant processing strategies and their affect upon starch grain survival when rendering Peltandra virginica (L.) Kunth, Araceae edible. Journal of Archaeological Science, 37(2), 328–336.

    Article  Google Scholar 

  • Musaubach, M. G., & Berón, M. A. (2017). Food residues as indicators of processed plants in hunter-gatherers’ pottery from La Pampa (Argentina). Vegetation History and Archaeobotany, 26(1), 111–123. https://doi.org/10.1007/s00334-016-0581-z.

    Article  Google Scholar 

  • Nägeli, C. (1858). Die Stärkekörner. Morphologishe, physiologishe, chemisch-physicalisch und systematisch-botansiche. Zurich: Verlag F. Schulthess.

    Google Scholar 

  • Pagán-Jiménez, J. R., Rodríguez-Ramos, R., Reid, B. A., van den Bel, M., & Hofman, C. L. (2015). Early dispersals of maize and other food plants into the Southern Caribbean and Northeastern South America. Quaternary Science Reviews, 123, 231–246. https://doi.org/10.1016/j.quascirev.2015.07.005.

    Article  Google Scholar 

  • Perry, L., Dickau, R., Zarrillo, S., Holst, I., Pearsall, D. M., Piperno, D. R., et al. (2007). Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science, 315, 986–988.

    Article  Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Lanham, MD: AltaMira Press.

    Google Scholar 

  • Piperno, D. R., & Dillehay, T. D. (2008). Starch grains on human teeth reveal early broad crop diet in Northern Peru. Proceedings of the National Academy of Sciences, 105(50), 19622–19627.

    Article  Google Scholar 

  • Piperno, D. R., & Holst, I. (1998). The presence of starch grains on prehistoric stone tools from the humid Neotropics: Indications of early tuber use and agriculture in Panama. Journal of Archaeological Science, 25, 765–776.

    Article  Google Scholar 

  • Piperno, D. R., Weiss, E., Holst, I., & Nadel, D. (2004). Processing of wild cereal grains in the Upper Paleolithic revealed by starch grain analysis. Nature, 430, 670–673.

    Article  Google Scholar 

  • Power, R. C., Salazar-García, D. C., Straus, L. G., González Morales, M. R., & Henry, A. G. (2015a). Microremains from El Mirón Cave human dental calculus suggest a mixed plant–animal subsistence economy during the Magdalenian in Northern Iberia. Journal of Archaeological Science, 60, 39–46. https://doi.org/10.1016/j.jas.2015.04.003.

    Article  Google Scholar 

  • Power, R. C., Salazar-García, D. C., Wittig, R. M., Freiberg, M., & Henry, A. G. (2015b). Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions. Scientific Reports, 5, 15161. https://doi.org/10.1038/srep15161.

    Article  Google Scholar 

  • Power, R. C., Salazar-García, D. C., & Henry, A. G. (2016). Dental calculus evidence of Gravettian diet and behaviour at Dolní VÄ›stonice and Pavlov. In Dolní VÄ›stonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology (pp. 345–352). Brno: Academy of Sciences of the Czech Republic, Institute of Archaeology.

    Google Scholar 

  • Power, R. C., Salazar-García, D. C., Rubini, M., Darlas, A., Harvati, K., Walker, M., et al. (2018). Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche. Journal of Human Evolution, 119, 27–41. https://doi.org/10.1016/j.jhevol.2018.02.009.

    Article  Google Scholar 

  • Radini, A., Nikita, E., Buckley, S., Copeland, L., & Hardy, K. (2017). Beyond food: The multiple pathways for inclusion of materials into ancient dental calculus. American Journal of Physical Anthropology, 162(S63), 71–83. https://doi.org/10.1002/ajpa.23147.

    Article  Google Scholar 

  • Radini, A., Tromp, M., Beach, A., Tong, E., Speller, C., McCormick, M., et al. (2019). Medieval women’s early involvement in manuscript production suggested by lapis lazuli identification in dental calculus. Science Advances, 5(1), eaau7126. https://doi.org/10.1126/sciadv.aau7126.

    Article  Google Scholar 

  • Reichert, E. T. (1913). The differentiation and specificity of starches in relation to genera, species, etc. Washington, DC: The Carnegie Institution of Washington.

    Google Scholar 

  • Revedin, A., Aranguren, B., Becattini, R., Longo, L., Marconi, E., Lippi, M. M., et al. (2010). Thirty thousand-year-old evidence of plant food processing. Proceedings of the National Academy of Sciences of the United States of America, 107, 18815–18819.

    Article  Google Scholar 

  • Samuel, D. (1996a). Investigation of ancient Egyptian baking and brewing methods by correlative microscopy. Science, 273, 488–490.

    Article  Google Scholar 

  • Samuel, D. (1996b). Archaeology of ancient Egyptian beer. Journal of the American Society of Brewing Chemists, 54(1), 3–12.

    Article  Google Scholar 

  • Saul, H., Wilson, J., Heron, C. P., Glykou, A., Hartz, S., & Craig, O. E. (2012). A systematic approach to the recovery and identification of starches from carbonised deposits on ceramic vessels. Journal of Archaeological Science, 39(12), 3483–3492. https://doi.org/10.1016/j.jas.2012.05.033.

    Article  Google Scholar 

  • Sivak, M. M., & Preiss, J. (1998). Starch: Basic science to biotechnology (S. L. Taylor, Ed.) (Vol. 41). Cambridge: Academic Press.

    Google Scholar 

  • Soto, M., Inwood, J., Clarke, S., Crowther, A., Covelli, D., Favreau, J., et al. (2019). Structural characterization and decontamination of dental calculus for ancient starch research. Archaeological and Anthropological Sciences, 11, 4847. https://doi.org/10.1007/s12520-019-00830-7.

    Article  Google Scholar 

  • Stoddard, F. L. (1999). Survey of starch particle-size distribution in wheat and related species. Cereal Chemistry, 76(1), 145–149. https://doi.org/10.1094/CCHEM.1999.76.1.145.

    Article  Google Scholar 

  • Tavarone, A., de los Milagros Colobig, M., Passeggi, E., & Fabra, M. (2018). Cleaning protocol of archaeological dental calculus: A methodological proposal for vegetable microremains analysis. American Journal of Physical Anthropology, 167(2), 416–422. https://doi.org/10.1002/ajpa.23630.

    Article  Google Scholar 

  • Tromp, M., & Dudgeon, J. V. (2015). Differentiating dietary and non-dietary microfossils extracted from human dental calculus: The importance of sweet potato to ancient diet on Rapa Nui. Journal of Archaeological Science, 54, 54–63. https://doi.org/10.1016/j.jas.2014.11.024.

    Article  Google Scholar 

  • Tromp, M., Buckley, H., Geber, J., & Matisoo-Smith, E. (2017). EDTA decalcification of dental calculus as an alternate means of microparticle extraction from archaeological samples. Journal of Archaeological Science: Reports, 14, 461–466. https://doi.org/10.1016/j.jasrep.2017.06.035.

    Article  Google Scholar 

  • Ugent, D., Pozorski, S., & Pozorski, T. (1982). Archaeological potato tuber remains from the Casma Valley of Peru. Economic Botany, 36(2), 182–192.

    Article  Google Scholar 

  • Wang, T. T., Fuller, B. T., Wei, D., Chang, X. E., & Hu, Y. W. (2016a). Investigating dietary patterns with stable isotope ratios of collagen and starch grain analysis of dental calculus at the iron age cemetery site of Heigouliang, Xinjiang, China. International Journal of Osteoarchaeology, 26(4), 693–704. https://doi.org/10.1002/oa.2467.

    Article  Google Scholar 

  • Wang, J., Liu, L., Ball, T., Yu, L., Li, Y., & Xing, F. (2016b). Revealing a 5,000-y-old beer recipe in China. Proceedings of the National Academy of Sciences, 113(23), 6444–6448. https://doi.org/10.1073/pnas.1601465113.

    Article  Google Scholar 

  • Wang, J., Liu, L., Georgescu, A., Le, V. V., Ota, M. H., Tang, S., & Vanderbilt, M. (2017). Identifying ancient beer brewing through starch analysis: A methodology. Journal of Archaeological Science: Reports, 15, 150–160. https://doi.org/10.1016/j.jasrep.2017.07.016.

    Article  Google Scholar 

  • Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., et al. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 46(4), 336–344. https://doi.org/10.1038/ng.2906.

    Article  Google Scholar 

  • Wilson, J., Hardy, K., Allen, R., Copeland, L., Wrangham, R., & Collins, M. (2010). Automated classification of starch granules using supervised pattern recognition of morphological properties. Journal of Archaeological Science, 37(3), 594–604. https://doi.org/10.1016/j.jas.2009.10.024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda G. Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henry, A.G. (2020). Starch Granules as Markers of Diet and Behavior. In: Henry, A.G. (eds) Handbook for the Analysis of Micro-Particles in Archaeological Samples. Interdisciplinary Contributions to Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-030-42622-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42622-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42621-7

  • Online ISBN: 978-3-030-42622-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics